首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
安全科学   16篇
基础理论   1篇
社会与环境   1篇
  2017年   1篇
  2013年   11篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2004年   3篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
The use of physiological data from human tests in modelling should consider background data, such as activity, environmental factors and clothing insulation on the whole body. The present paper focuses on local thermal comfort of feet with special attention on the effects of physical changes of footwear thermal properties. An alternative test method is available for footwear thermal testing besides the standard method. The possibility to use insulation values acquired on a thermal foot model in practice is shown here. The paper describes the correlation between cold and pain sensations, and foot skin temperatures of the subjects and relates these to insulation measured on a thermal foot model. Recommendations are made for footwear choice according to environmental temperature.  相似文献   
2.
Standard No. EN 15831:2004 provides 2 methods of calculating insulation: parallel and serial. The parallel method is similar to the global one defined in Standard No. ISO 9920:2007. Standards No. EN 342:2004, EN 14058:2004 and EN 13537:2002 refer to the methods defined in Standard No. EN ISO 15831:2004 for testing cold protective clothing or equipment. However, it is necessary to consider several issues, e.g., referring to measuring human subjects, when using the serial method. With one zone, there is no serial-parallel issue as the results are the same, while more zones increase the difference in insulation value between the methods. If insulation is evenly distributed, differences between the serial and parallel method are relatively small and proportional. However, with more insulation layers overlapping in heavy cold protective ensembles, the serial method produces higher insulation values than the parallel one and human studies. Therefore, the parallel method is recommended for standard testing.  相似文献   
3.
The study aimed to find out the influence of sweating on footwear insulation with a thermal foot model. Simultaneously, the influence of applied weight (35 kg), sock, and steel toe cap were studied. Water to 3 sweat glands was supplied with a pump at the rate of 10 g/hr in total. Four models of boots with steel toe caps were tested. The same models were manufactured also without steel toe. Sweating reduced footwear insulation 19–25% (30–37% in toes). During static conditions, only a minimal amount of sweat evaporated from boots. Weight affected sole insulation: Reduction depended on compressibility of sole material. The influence of steel toe varied with insulation. The method of thermal foot model appears to be a practical tool for footwear evaluation.  相似文献   
4.
This study compared the methods of determining footwear insulation on human participants and a thermal foot model. Another purpose was to find the minimal number of measurement points on the human foot that is needed for insulation calculation. A bare foot was tested at 3 ambient temperatures on 6 participants. Three types of footwear were tested on 2 participants. The mean insulation for a bare foot obtained on the participant and model were similar. The insulation of warm footwear measured by the 2 methods was also similar. For thin footwear the insulation values from the participants were higher than those from the thermal model. The differences could be related to undefined physiological factors. Two points on the foot can be enough to measure the insulation of footwear on human participants (r = .98). However, due to the big individual differences of humans, and good repeatability and simplicity of thermal foot method, the latter should be preferred for testing.  相似文献   
5.
The present European Standard for footwear testing (Standard No. EN 344:1992; European Committee for Standardization [CEN], 1992) classifies footwear thermally by a temperature drop inside the footwear during 30 min at defined conditions. Today, other methods for footwear thermal testing are also available. The aim of this study was to compare EN 344:1992 with a thermal foot method. Six boots were tested according to both methods. Additional tests with modified standard tests were also carried out. The methods ranked the footwear in a similar way. However, the test according to standard EN 344:1992 is a pass-or-fail test, whereas data that is gained from the thermal foot method gives more information and allows further use in research and product development. A change of the present standard method is suggested.  相似文献   
6.
The aim of the study was to examine the effects of wearing an ice-vest (ca 1 kg) on physiological and subjective responses in fire fighters. The experiments were carried out on a treadmill in a hot-dry environment. The physical cooling effect of the ice-vest was measured with a thermal manikin. The ice-vest effectively reduced skin temperatures under the vest. On average, heart rate was 10 beats/min lower, the amount of sweating was reduced by 13%, and subjective sensations of effort and warmth were lower during work with the ice-vest compared to work without it. Thermal manikin tests indicated that the useful energy available from the vest for body cooling was rather high (58%). In conclusion, the ice-vest reduces physiological and subjective strain responses during heavy work in the heat, and may promote efficient work time by 10%.  相似文献   
7.
The European Standard on sleeping bag requirements (EN 13537:2002) describes a procedure to determine environmental temperature limits for safe usage of sleeping bags regarding their thermal insulation. However, there are several possible sources of error related to this procedure. The main aim of this work was to determine the influence of the various measuring parameters on the acuity of the respective parameters in order to judge the requirements. The results indicated that air velocity, mattress insulation and time between unpacking the bag and measurement had a significant impact on the result, with a difference of up to 5–15% in thermal insulation between minimum and maximum allowable parameter levels. On the other hand, manikin weight, thickness of the artificial ground and presence of a face mask were found to have a negligible influence. The article also discusses more general aspects of the standard including the calculation methods used.  相似文献   
8.
The heat transferred through protective clothing under long wave radiation compared to a reference condition without radiant stress was determined in thermal manikin experiments. The influence of clothing insulation and reflectivity, and the interaction with wind and wet underclothing were considered. Garments with different outer materials and colours and additionally an aluminised reflective suit were combined with different number and types of dry and pre-wetted underwear layers. Under radiant stress, whole body heat loss decreased, i.e., heat gain occurred compared to the reference. This heat gain increased with radiation intensity, and decreased with air velocity and clothing insulation. Except for the reflective outer layer that showed only minimal heat gain over the whole range of radiation intensities, the influence of the outer garments’ material and colour was small with dry clothing. Wetting the underclothing for simulating sweat accumulation, however, caused differing effects with higher heat gain in less permeable garments.  相似文献   
9.
Five students of a rescue training school cycled at 50 W for 20 min at 20 °C before walking at 5 km/hr up to 30 min in a climatic chamber at 55 °C and 30% relative humidity. 4 different types of clothing ensembles differing in terms of thickness and thermal insulation value were tested on separate days. All subjects completed 28–30 min in light clothing, but quit after 20–27 min in 3 firefighter ensembles due to a rectal temperature of 39 °C or subjective fatigue. No difference in the evolution of mean skin or rectal temperature was seen for the 3 turnout ensembles. Sweat production amounted to about 1000 g in the turnout gears of which less than 20% evaporated. It was concluded that the small differences between the turnout gears in terms of design, thickness and insulation value had no effect on the resulting heat physiological strain for the given experimental conditions.  相似文献   
10.
The aim of the study was to examine the effects of wearing an ice-vest (ca 1 kg) on physiological and subjective responses in fire fighters. The experiments were carried out on a treadmill in a hot-dry environment. The physical cooling effect of the ice-vest was measured with a thermal manikin. The ice-vest effectively reduced skin temperatures under the vest. On average, heart rate was 10 beats/min lower, the amount of sweating was reduced by 13%, and subjective sensations of effort and warmth were lower during work with the ice-vest compared to work without it. Thermal manikin tests indicated that the useful energy available from the vest for body cooling was rather high (58%). In conclusion, the ice-vest reduces physiological and subjective strain responses during heavy work in the heat, and may promote efficient work time by 10%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号