首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   3篇
  国内免费   9篇
安全科学   4篇
废物处理   10篇
环保管理   36篇
综合类   54篇
基础理论   32篇
污染及防治   94篇
评价与监测   24篇
社会与环境   7篇
灾害及防治   3篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   2篇
  2019年   1篇
  2018年   7篇
  2017年   13篇
  2016年   8篇
  2015年   4篇
  2014年   9篇
  2013年   25篇
  2012年   11篇
  2011年   18篇
  2010年   18篇
  2009年   14篇
  2008年   14篇
  2007年   9篇
  2006年   15篇
  2005年   11篇
  2004年   14篇
  2003年   8篇
  2002年   6篇
  2001年   13篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1973年   1篇
  1956年   2篇
排序方式: 共有264条查询结果,搜索用时 31 毫秒
1.
The Kyoto Protocol marks the beginning of a new global effort to combat climate change. By constructing GDP and CO2 emissions as two counteracting performance criteria on a per capita basis, this paper aims to advance the understanding of performance variation among different Annex groups under pressure from climate change. This differs from the traditional application of evaluation and aims to identify inherent efficiency differences across systems rather than separately based on the potential inefficiency of individual countries. The ‘world frontier’ for Annex Parties consists of three layers: Annex II forms the first layer, EIT and Annex III form the second layer, and Annex IV forms the third layer. The inferior performance observed in other non-Annex II Parties (EIT, Annex III, and Annex IV Parties) or the existence of a multi-frontier structure is due to an inherent system affiliation rather than poor performance on the part of the individual country. Annex IV Parties can be particularly vulnerable to controls on an emission intensity basis. By not only serving as a reference for future allocation schemes, the results can shed light on the function of a flexible reduction mechanism for countries that cooperate based on their common but differentiated responsibilities.  相似文献   
2.
A real-time, dynamic, early-warning model (EP-risk model) is proposed to cope with sudden water quality pollution accidents affecting downstream areas with raw-water intakes (denoted as EPs). The EP-risk model outputs the risk level of water pollution at the EP by calculating the likelihood of pollution and evaluating the impact of pollution. A generalized form of the EP-risk model for river pollution accidents based on Monte Carlo simulation, the analytic hierarchy process (AHP) method, and the risk matrix method is proposed. The likelihood of water pollution at the EP is calculated by the Monte Carlo method, which is used for uncertainty analysis of pollutants’ transport in rivers. The impact of water pollution at the EP is evaluated by expert knowledge and the results of Monte Carlo simulation based on the analytic hierarchy process. The final risk level of water pollution at the EP is determined by the risk matrix method. A case study of the proposed method is illustrated with a phenol spill accident in China.  相似文献   
3.
The projected increase in atmospheric N deposition and air/soil temperature will likely affect soil nutrient dynamics in boreal ecosystems. The potential effects of these changes on soil ion fluxes were studied in a mature balsam fir stand (Abies balsamea [L.] Mill) in Quebec, Canada that was subjected to 3 years of experimentally increased soil temperature (+4 °C) and increased inorganic N concentration in artificial precipitation (three times the current N concentrations using NH4NO3). Soil element fluxes (NO3, NH4, PO4, K, Ca, Mg, SO4, Al, and Fe) in the organic and upper mineral horizons were monitored using buried ion-exchange membranes (PRS? probes). While N additions did not affect soil element fluxes, 3 years of soil warming increased the cumulative fluxes of K, Mg, and SO4 in the forest floor by 43, 44, and 79 %, respectively, and Mg, SO4, and Al in the mineral horizon by 29, 66, and 23 %, respectively. We attribute these changes to increased rates of soil organic matter decomposition. Significant interactions of the heating treatment with time were observed for most elements although no clear seasonal patterns emerged. The increase in soil K and Mg in heated plots resulted in a significant but small K increase in balsam fir foliage while no change was observed for Mg. A 6–15 % decrease in foliar Ca content with soil warming could be related to the increase in soil-available Al in heated plots, as Al can interfere with the root uptake of Ca.  相似文献   
4.
5.
The aim of this work is to study the colour and chemical modifications of the surfaces in chestnut wood samples as a consequence of irradiating in a controlled environment. The changes were investigated by a new analytical approach by combining traditional techniques such as reflectance spectrophotometry in the visible range and Fourier transform infrared spectroscopy with new hyperspectral imaging, in order to obtain forecast models to describe the phenomenon. The statistical elaboration of the experimental data allowed to validate the measurements and to obtain models enabling to relate the investigated parameters; the elaboration of the hyperspectral images by chemometric methods allowed for studying the changes in the reflectance spectra. A result of great importance is the possibility to correlate the oxidation of wood chemical components with the colour change in a totally non-invasive modality. This result is particularly relevant in the field of cultural heritage and in general in the control processes of wooden materials.  相似文献   
6.
About 3600 tonnes food waste are discarded in the landfills in Hong Kong daily. It is expected that the three strategic landfills in Hong Kong will be exhausted by 2020. In consideration of the food waste management environment and community needs in Hong Kong, as well as with reference to the food waste management systems in cities such as Linköping in Sweden and Oslo in Norway, a framework of food waste separation, collection, and recycling for food waste valorization is proposed in this paper. Food waste can be packed in an optic bag (i.e., a bag in green color), while the residual municipal solid waste (MSW) can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations, in which food waste is separated from the residual MSW using an optic sensor. On the one hand, the sorted food waste can be converted into valuable materials (e.g., compost, swine feed, fish feed). On the other hand, the sorted food waste can be sent to the proposed Organic Waste Treatment Facilities and sewage treatment works for producing biogas. The biogas can be recovered to produce electricity and city gas (i.e., heating fuel for cooking purpose). Due to the challenges faced by the value-added products in Hong Kong, the biogas is recommended to be upgraded as a biogas fuel for vehicle use. Hopefully, the proposed framework will provide a simple and effective approach to food waste separation at source and promote sustainable use of waste to resource in Hong Kong.  相似文献   
7.
The microwave enhanced advanced oxidation process (MW/H2O2-AOP) was used to treat separated solid dairy manure for nutrient release and solids reduction. The MW/H2O2-AOP was conducted at a microwave temperature of 120°C for 10 minutes, and at three pH conditions of 3.5, 7.3 and 12. The hydrogen peroxide dosage at approximately 2 mL per 1% TS for a 30 mL sample was used in this study, reflecting a range of 0.53–0.75 g H2O2/g dry sludge. The results indicated that substantial quantities of nutrients could be released into the solution at pH of 3.5. However, at neutral and basic conditions only volatile fatty acids and soluble chemical oxygen demand could be released. The analyses on orthophosphate, soluble chemical oxygen demands and volatile fatty acids were re-examined for dairy manure. It was found that the orthophosphate concentration for untreated samples at a higher % total solids (TS) was suppressed and lesser than actual. To overcome this difficulty, the initial orthophosphate concentration had to be measured at 0.5% TS.  相似文献   
8.
A fresh bagasse sample (0-month) and two composted bagasse and pig manure mixed samples (1-month and 6-month) were used to produce carbon chars. Sample pyrolysis showed greater carbon char yields were obtained from the compost samples than from the bagasse sample. Fourier transform infrared spectra suggested that the chemical structures of the bagasse sample and the two compost samples were quite different, but that the three carbon chars obtained from those precursors were similar. Among the three pyrolyzed chars, the 0-month bagasse char displayed the largest sorption capacity of 3333 mg kg?1 for the hydrophilic pollutant phenol, presumably resulting from its greater carbon content and O/C ratio. However, the sorption capacities for the hydrophobic pollutant naphthalene of the tow compost chars (3-month, 2001 mg kg?1; 6-month, 1667 mg kg?1) were greater than that of the 0-month bagasse char (1428 mg kg?1). The results indicate that the compost chars had a greater preferential affinity for naphthalene than that in the bagasse char, suggesting that the compost chars possessed greater hydrophobicity.  相似文献   
9.
The use of biomass and waste to produce alternative fuels, due to environmental and energy security reasons, is a high-quality solution especially when integrated with high efficiency fuel cell applications. In this article we look into the coupling of an anaerobic digestion process of organic residues to electrochemical conversion to electricity and heat through a molten carbonate fuel cell (MCFC). In particular the pathway of the exceedingly harmful compound hydrogen sulphide (H2S) in these phases is analysed. Hydrogen sulphide production in the biogas is strongly interrelated with methane and/or hydrogen yield, as well as with operating conditions like temperature and pH. When present in the produced biogas, this compound has multiple negative effects on the performance and durability of an MCFC. Therefore, there are important issues of integration to be solved.Three general approaches to solve the sulphur problem in the MCFC are possible. The first is to prevent the formation of hydrogen sulphide at the source: favouring conditions that inhibit its production during fermentation. Secondly, to identify the sulphur tolerance levels of the fuel cell components currently in use and develop sulphur-tolerant components that show long-term electrochemical performance and corrosion stability. The third approach is to remove the generated sulphur species to very low levels before the gas enters the fuel cell.  相似文献   
10.
ABSTRACT

The accuracy of CO concentration determination by open-path Fourier transform infrared (FTIR) spectrometry has been re-evaluated in detail. The evaluation focuses on the correction of the calibration curve—the integrated intensity of a standard spectrum—that is used as a comparison spectrum when doing quantitative analysis of CO. Results show that the calibration curve (with 0.5 cm-1 or 1 cm-1 resolution) is apparently inclined to be nonlinear under standard conditions, and that the threshold point of nonlinearity is ~0.1 atm-cm. Two commercial FTIR field monitoring systems have been used to investigate the nonlinearity trend. The experimental method consists of using open-path FTIR systems in combination with nondispersive infrared (NDIR) monitors to establish the calibration curve in a semi-closed corridor. The results have been double-checked using closed-cell dynamic equilibrium systems.

When the optical density is larger than a certain value, the curves begin to bend, and when the optical density approaches zero, the band strength is around 178 ± 3 atm-1 cm-2 and 173 ± 2 atm-1 cm-2, respectively, for 0.5 and 1 cm-1 resolution at standard temperature and pressure (STP). These values are quite different from other published data that have been acquired by the pressurized method or by high-resolution  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号