首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环保管理   1篇
基础理论   6篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  1987年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
Abstract:  Demographic data of rare and endangered species are often too sparse to estimate vital rates and population size with sufficient precision for understanding population growth and decline. Yet, the combination of different sources of demographic data into one statistical model holds promise. We applied Bayesian integrated population modeling to demographic data from a colony of the endangered greater horseshoe bats (Rhinolophus ferrumequinum) . Available data were the number of subadults and adults emerging from the colony roost at dusk, the number of newborns from 1991 to 2005, and recapture data of subadults and adults from 2004 and 2005. Survival rates did not differ between sexes, and demographic rates remained constant across time. The greater horseshoe bat is a long-lived species with high survival rates (first year: 0.49 [SD 0.06]; adults: 0.91 [SD 0.02]) and low fecundity (0.74 [SD 0.12]). The yearly average population growth was 4.4% (SD 0.1%) and there were 92 (SD 10) adults in the colony in year 2005. Had we analyzed each data set separately, we would not have been able to estimate fecundity, the estimates of survival would have been less precise, and the estimate of population growth biased. Our results demonstrate that integrated models are suitable for obtaining crucial demographic information from limited data.  相似文献   
3.
Using Niche-Based Models to Improve the Sampling of Rare Species   总被引:7,自引:0,他引:7  
Abstract:  Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.  相似文献   
4.
In some fishes, water chemistry or temperature affects sex determination or creates sex‐specific selection pressures. The resulting population sex ratios are hard to predict from laboratory studies if the environmental triggers interact with other factors, whereas in field studies, singular observations of unusual sex ratios may be particularly prone to selective reporting. Long‐term monitoring largely avoids these problems. We studied a population of grayling (Thymallus thymallus) in Lake Thun, Switzerland, that has been monitored since 1948. Samples of spawning fish have been caught about 3 times/week around spawning season, and water temperature at the spawning site has been continuously recorded since 1970. We used scale samples collected in different years to determine the average age of spawners (for life‐stage specific analyses) and to identify the cohort born in 2003 (an extraordinarily warm year). Recent tissue samples were genotyped on microsatellite markers to test for genetic bottlenecks in the past and to estimate the genetically effective population size (Ne). Operational sex ratios changed from approximately 65% males before 1993 to approximately 85% males from 1993 to 2011. Sex ratios correlated with the water temperatures the fish experienced in their first year of life. Sex ratios were best explained by the average temperature juvenile fish experienced during their first summer. Grayling abundance is declining, but we found no evidence of a strong genetic bottleneck that would explain the apparent lack of evolutionary response to the unequal sex ratio. Results of other studies show no evidence of endocrine disruptors in the study area. Our findings suggest temperature affects population sex ratio and thereby contributes to population decline. Persistencia de Proporción de Sexos Desigual en una Población de Tímalos (Salmonidae) y el Posible Papel del Incremento de la Temperatura  相似文献   
5.
Abstract: Searching for indicator taxa representative of diverse assemblages, such as arthropods, is an important objective of many conservation studies. We evaluated the impacts of a wide gradient of disturbance in Gabon on a range of arthropod assemblages representing different feeding guilds. We examined 4 × 105 arthropod individuals from which 21 focal taxa were separated into 1534 morphospecies. Replication included the understory of 3 sites in each of 4 different stages of forest succession and land use (i.e., habitats) after logging (old and young forests, savanna, and gardens). We used 3 complementary sampling methods to survey sites throughout the year. Overall differences in arthropod abundance and diversity were greatest between forest and open habitats, and cleared forest invaded by savanna had the lowest abundance and diversity. The magnitude of faunal differences was much smaller between old and young forests. When considered at this local scale, anthropogenic modification of habitats did not result in a monotonous decline of diversity because many herbivore pests and their associated predators and parasitoids were abundant and diverse in gardens, where plant productivity was kept artificially high year‐round through watering and crop rotation. We used a variety of response variables to measure the strength of correlations across survey locations among focal taxa. These could be ranked as follows in terms of decreasing number of significant correlations: species turnover > abundance > observed species richness > estimated species richness > percentage of site‐specific species. The number of significant correlations was generally low and apparently unrelated to taxonomy or guild structure. Our results emphasize the value of reporting species turnover in conservation studies, as opposed to simply measuring species richness, and that the search for indicator taxa is elusive in the tropics. One promising alternative might be to consider “predictor sets” of a small number of taxa representative of different functional groups, as identified in our study.  相似文献   
6.
Abstract: Assessing conservation strategies requires reliable estimates of abundance. Because detecting all individuals is most often impossible in free‐ranging populations, estimation procedures have to account for a <1 detection probability. Capture–recapture methods allow biologists to cope with this issue of detectability. Nevertheless, capture–recapture models for open populations are built on the assumption that all individuals share the same detection probability, although detection heterogeneity among individuals has led to underestimating abundance of closed populations. We developed multievent capture–recapture models for an open population and proposed an associated estimator of population size that both account for individual detection heterogeneity (IDH). We considered a two‐class mixture model with weakly and highly detectable individuals to account for IDH. In a noninvasive capture–recapture study of wolves we based on genotypes identified in feces and hairs, we found a large underestimation of population size (27% on average) occurred when IDH was ignored.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号