首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   3篇
  2021年   1篇
  2011年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Environmental Fluid Mechanics - An internal wave is a propagating disturbance within a stable density-stratified fluid. The internal seiche amplitude is often estimated through theories that...  相似文献   
2.
Habitat loss, trophic collapse, and the decline of ecosystem services   总被引:8,自引:0,他引:8  
The provisioning of sustaining goods and services that we obtain from natural ecosystems is a strong economic justification for the conservation of biological diversity. Understanding the relationship between these goods and services and changes in the size, arrangement, and quality of natural habitats is a fundamental challenge of natural resource management. In this paper, we describe a new approach to assessing the implications of habitat loss for loss of ecosystem services by examining how the provision of different ecosystem services is dominated by species from different trophic levels. We then develop a mathematical model that illustrates how declines in habitat quality and quantity lead to sequential losses of trophic diversity. The model suggests that declines in the provisioning of services will initially be slow but will then accelerate as species from higher trophic levels are lost at faster rates. Comparison of these patterns with empirical examples of ecosystem collapse (and assembly) suggest similar patterns occur in natural systems impacted by anthropogenic change. In general, ecosystem goods and services provided by species in the upper trophic levels will be lost before those provided by species lower in the food chain. The decrease in terrestrial food chain length predicted by the model parallels that observed in the oceans following overexploitation. The large area requirements of higher trophic levels make them as susceptible to extinction as they are in marine systems where they are systematically exploited. Whereas the traditional species-area curve suggests that 50% of species are driven extinct by an order-of-magnitude decline in habitat abundance, this magnitude of loss may represent the loss of an entire trophic level and all the ecosystem services performed by the species on this trophic level.  相似文献   
3.
Vogt RJ  Rusak JA  Patoine A  Leavitt PR 《Ecology》2011,92(5):1104-1114
Interannual variation of 45 annually resolved time series of environmental, limnological, and biotic parameters was quantified (1994-2009) in six lakes within 52,000 km2 to test the hypothesis that influx of energy (E; as irradiance, heat, wind) varies synchronously among sites and induces temporal coherence in lakes and their food webs, whereas influx of mass (m; as water, solutes, particles) reduces synchrony because local catchments uniquely modify hydrologic inputs. Overall, 82% of parameters exhibited significant (P < 0.05) synchrony (S) estimated as mean pair-wise correlation of Z-transformed time series. Influx of E as atmospheric heat and irradiance was both more highly synchronous and less temporally variable (months-to-decades) than influx of m as summer precipitation, snow, or river discharge. Similarly, S of limnological parameters varied from 0.08 to 0.85, with variables known to be regulated by E influx (ice melt, gas solubility) up to twofold more coherent than those regulated by m inputs (organic solutes). Pairs of variables linked by simple direct mechanisms exhibited similar S values (air temperature and ice melt, nutrients and algae), whereas the coherence of other parameters (water temperature, mixing) was intermediate to that of multiple regulatory agents. Overall, aggregate measures of plankton density varied more coherently among lakes than did constituent taxa. These findings suggest that environmental variability is transmitted to most levels of aquatic ecosystems, but that the precise effects depend on whether E or m fluxes predominate, the coherence of each forcing mechanism, and the strength of linkages between exogenous forcing and lake response.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号