首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础理论   4篇
污染及防治   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 100 毫秒
1
1.
Environmental Chemistry Letters - Polyethylene terephthalate is a common plastic in many products such as viscose rayon for clothing, and packaging material in the food and beverage industries....  相似文献   
2.
The increasing use of toxic pesticides is a major environmental concern. Carbendazim is a systemic fungicide having wide applications for controlling fungal diseases in agriculture, forestry and veterinary medicines. Carbendazim is a major pollutant detectable in food, soil and water. Carbendazim extensive and repeated use induces acute and delayed toxic effects on humans, invertebrates, aquatic life forms and soil microorganisms. Here, we review the pollution, non-target toxicity and microbial degradation of carbendazim for crop and veterinary purposes. We found that carbendazim causes embryotoxicity, apoptosis, teratogenicity, infertility, hepatocellular dysfunction, endocrine-disrupting effects, disruption of haematological functions, mitotic spindle abnormalities, mutagenic and aneugenic effect. We also found that carbendazim disrupted the microbial community structure in various ecosystems. The detection of carbendazim in soil and reservoir sites is performed by spectroscopic, chromatographic, voltammetric, nanoparticles, carbon electrodes and mass spectrometry. A review of the degradation of carbendazim shows that carbendazim undergoes partial to complete biodegradation in the soil and water by Azospirillum, Aeromonas, Alternaria, Bacillus, Brevibacillus, Nocardioides, Pseudomonas, Ralstonia, Rhodococcus, Sphingomonas, Streptomyces and Trichoderma.  相似文献   
3.
Salicylic acid to decrease plant stress   总被引:2,自引:0,他引:2  
Pollution and climate change degrade plant health. Plant stress can be decreased by application of salicylic acid, an hormone involved in plant signaling. Salicylic acid indeed initiates pathogenesis-related gene expression and synthesis of defensive compounds involved in local resistance and systemic acquired resistance. Salicylic acid may thus be used against pathogen virulence, heavy metal stresses, salt stress, and toxicities of other elements. Applied salicylic acid improves photosynthesis, growth, and various other physiological and biochemical characteristics in stressed plants. Salicylic acid antagonizes the oxidative damaging effect of metal toxicity directly by acting as an antioxidant to scavenge the reactive oxygen species and by activating the antioxidant systems of plants and indirectly by reducing uptake of metals from their medium of growth. We review here the use of exogenous salicylic acid in alleviating bacterial, fungal, and viral diseases, heavy metal toxicity, toxicity of essential micronutrients, and salt stress.  相似文献   
4.
Environmental Science and Pollution Research - Metalloids are a subset of particular concern to risk assessors and toxicologists because of their well-documented potential hazards to plant system....  相似文献   
5.
Toxicity,degradation and analysis of the herbicide atrazine   总被引:3,自引:0,他引:3  
Excessive use of pesticides and herbicides is a major environmental and health concern worldwide. Atrazine, a synthetic triazine herbicide commonly used to control grassy and broadleaf weeds in crops, is a major pollutant of soil and water ecosystems. Atrazine modifies the growth, enzymatic processes and photosynthesis in plants. Atrazine exerts mutagenicity, genotoxicity, defective cell division, erroneous lipid synthesis and hormonal imbalance in aquatic fauna and nontarget animals. It has threatened the sustainability of agricultural soils due to detrimental effects on resident soil microbial communities. The detection of atrazine in soil and reservoir sites is usually made by IR spectroscopy, ELISA, HPLC, UPLC, LC–MS and GC–MS techniques. HPLC/LC–MS and GC–MS techniques are considered the most effective tools, having detection limits up to ppb levels in different matrices. Biodegradation of atrazine by microbial species is increasingly being recognized as an eco-friendly, economically feasible and sustainable bioremediation strategy. This review presents the toxicity, analytical techniques, abiotic degradation and microbial metabolism of atrazine.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号