首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   1篇
基础理论   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Wild rodents were collected using live snap traps in pistachio gardens of Kerman Province, Southeast Iran from 2007 to 2009, then some physiological parameters of them were measured. The samples were identified as follow: Nesokia indica, Meriones persicus, Meriones lybicus and Tatera indica. Blood samples were obtained from the heart, then the blood parameters (glucose, cholesterol, triglyceride, total protein, HDL, red and white blood cell number) in wild species of rodents and laboratory rat were compared. The results showed that there were no significant differences in serum glucose, triglyceride, HDL and total protein levels among different experimental groups. The concentration of cholesterol in T. indica was more than that in N. indica (P < 0.01). The total numbers of red blood cells also showed significant difference between wild garden rodent species and laboratory rat (P < 0.01), while the numbers of white blood cells showed no significant difference.  相似文献   
2.
3.
Biological control (the importation of enemies from an invader's native range) is often considered our best chance of controlling the most widespread invaders. Ideally, the agent reduces invader abundance to some acceptably low level, and the two coexist at low density with the agent providing continuous control over the long-term. But the outcome may be complicated when the agent is attacked by native predators and parasites. We used a spatially explicit, discrete-time, individual-based, coupled plant-seed predator-parasitoid model to estimate the impact of the biocontrol agent Eustenopus villosus (a seed predator) on the invasive, annual weed Centaurea solstitialis, both with and without the generalist parasitoid Pyemotes tritici. We estimated the agent's ability to reduce plant density, spread rate, and population growth rate over 50 years. We used long-term demographic data from two sites in central California, USA, to parameterize the model and assess how populations in different climatic zones might respond differently to the agent and the parasitoid. We found that the biocontrol agent reduced plant density (relative to predictions for an uncontrolled invasion), but its impact on the invader's spread rate was modest and inconsistent. The agent had no long-term impact on population growth rate (lambda). Parasitism caused a trophic cascade, the strength of which varied between sites. At our coastal site, the parasitoid entirely eliminated the impact of the agent on the plant. At our Central Valley site, even when parasitized, the agent significantly reduced plant density and spread rate over several decades (although to a lesser degree than when it was not parasitized), but not invader lambda. Surprisingly, we also found that the length of time the invader was allowed to spread across the landscape prior to introducing the agent (5, 25, or 50 years) had little influence over its ability to control the weed in the long-term. This is encouraging news for land managers attempting to control invasive plants that have already established widespread, high-density populations. Unfortunately, our results also show that attack by the native generalist parasitoid had a larger influence over how effectively the agent reduced invader performance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号