首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
环保管理   2篇
基础理论   22篇
社会与环境   1篇
  2017年   1篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有25条查询结果,搜索用时 78 毫秒
1.
Establishing IUCN Red List Criteria for Threatened Ecosystems   总被引:1,自引:0,他引:1  
Abstract: The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012.  相似文献   
2.
Abstract:  New Zealand established its first no-take marine reserve more than 25 years ago. Twenty no-take marine reserves have now been created, although few of these are considered comparable. We considered whether existing conceptual models of population and community structure based only on data from exploited systems lack the baseline information of natural states necessary to make accurate predictions for new reserves. Three of the oldest and best-studied reserves are situated on the northeastern coast of New Zealand. These reserves are considered broadly comparable replicates, and research has shown the recovery of previously exploited predator populations and the reestablishment of trophic controls over community structure and productivity. None of the major changes was predicted when the reserves were created. All the observations from and experimental tests of hypotheses in these three ecologically comparable reserves have provided predictive models for future reserves. Recent surveys in newly created reserves, however, suggest that these models are bioregion and habitat specific. In these new reserves the recovery of previously exploited predators was predicted but did not always occur. Where trends were correctly predicted, the speed and amplitude of the changes were not accurately predicted. Research in New Zealand suggests that it is not yet possible to predict explicit outcomes for newly created reserves and less possible to predict detailed results for systems of reserves. Results from a representative system of reserves, including all major habitats within all bioregions and broadly comparable reserves, are needed. Such a system will enable the range and variety of natural ecosystem dynamics to be investigated and provide the controls necessary to measure the effects of exploitation.  相似文献   
3.
Abstract:  Bycatch—the incidental catch of nontarget species—is a principal concern in marine conservation and fisheries management. In the eastern Pacific Ocean tuna fishery, a large fraction of nonmammal bycatch is captured by purse-seine gear when nets are deployed around floating objects. We examined the spatial distribution of a dominant species in this fishery's bycatch, the apex predator silky shark ( Carcharhinus falciformis ), from 1994 to 2005 to determine whether spatial closures, areas where fishing is prohibited, might effectively reduce the bycatch of this species. We then identified candidate locations for fishery closures that specifically considered the trade-off between bycatch reduction and the loss of tuna catch and evaluated ancillary conservation benefits to less commonly captured taxa. Smoothed spatial distributions of silky shark bycatch did not indicate persistent small areas of especially high bycatch for any size class of shark over the 12-year period. Nevertheless, bycatch of small silky sharks (<90 cm total length) was consistently higher north of the equator during all years. On the basis of this distribution, we evaluated nearly 100 candidate closure areas between 5°N and 15°N that could have reduced, by as much as 33%, the total silky shark bycatch while compromising only 12% of the tuna catch. Although silky sharks are the predominant species of elasmobranchs caught as bycatch in this fishery, closures also suggested reductions in the bycatch of other vulnerable taxa, including other shark species and turtles. Our technique provides an effective method with which to balance the costs and benefits of conservation in fisheries management. Spatial closures are a viable management tool, but implementation should be preceded by careful consideration of the consequences of fishing reallocation.  相似文献   
4.
Abstract: Many populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long‐lived animals, efforts must be prioritized according to feasibility and the degree to which they address threats with the highest relative impacts on population dynamics. Recently, Wilcox and Donlan (2007, Frontiers in Ecology and the Environment) and Donlan and Wilcox (2008, Biological Invasions) proposed a conservation strategy of “compensatory mitigation” in which fishing industries offset bycatch of seabirds and sea turtles by funding eradication of invasive mammalian predators from the terrestrial reproductive sites of these marine animals . Although this is a creative and conceptually compelling approach, we find it flawed as a conservation tool because it has narrow applicability among marine megafauna, it does not address the most pervasive threats to marine megafauna, and it is logistically and financially infeasible. Invasive predator eradication does not adequately offset the most pressing threat to most marine megafauna populations—fisheries bycatch. For seabird populations, fisheries bycatch and invasive predators infrequently are overlapping threats. Invasive predators have limited population‐level impacts on sea turtles and marine mammals and no impacts on elasmobranchs, all of which are threatened by bycatch. Implementing compensatory mitigation in marine fisheries is unrealistic due to inadequate monitoring, control, and surveillance in the majority of fleets. Therefore, offsetting fisheries bycatch with eradication of invasive predators would be less likely to reverse population declines than reducing bycatch. We recommend that efforts to mitigate bycatch in marine capture fisheries should address multiple threats to sensitive bycatch species groups, but these efforts should first institute proven bycatch avoidance and reduction methods before considering compensatory mitigation.  相似文献   
5.
United States and Canadian governments have responded to legal requirements to reduce human‐induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause‐specific mortalities with time. We compared the number of human‐caused mortalities with U.S. federally established levels of potential biological removal (i.e., species‐specific sustainable human‐caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n = 323), followed by natural causes (n = 248) and vessel strikes (n = 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel‐strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel‐strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population‐range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife‐management decisions. The results of these analyses can provide managers with direction for modifying regulated measures and can be applied globally to mortality‐driven conservation issues. Evaluación del Manejo para Mitigar Efectos Antropogénicos sobre Ballenas Mayores  相似文献   
6.
7.
Several submerged barges were recently removed from the Passaic River, New Jersey, USA, in two areas (areas 1 and 2) where contaminated sediments are known to exist. During removal of the single barge in area 1, elevated turbidity levels and chemical parameters were measured. Greater increases were measured in area 2, where several barges were removed. In both areas, water column concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and several metals exceeded one or more water quality criteria; turbidity levels in area 2 also exceeded regulatory criteria. Potential chemical bioaccumulation from the water column into residential aquatic receptors was estimated using standard models and assumptions. The modeled results predicted that steady-state tissue concentrations of bioaccumulative chemicals would not occur as a result of the brief increase in water column concentrations that occurred during barge removal but that metals and PCDD/Fs could bioaccumulate to levels that exceed regulatory ecological criteria during long-term sediment disturbance activities. In addition, based on some simplistic assumptions regarding settling of suspended sediments, we estimate that chemical bioaccumulation from surface sediments into the food web could result in substantial increases in PCDD/F body burdens in the benthic forage fish, mummichog. Our findings are consistent with the limited number of field studies that have measured increased body burdens of bioaccumulative chemicals following dredging. We suggest that, prior to consideration of extensive dredging as a remedial alternative for any river system, the potential significant and long-term impacts on the food web must be evaluated.  相似文献   
8.
9.
10.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号