首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   2篇
废物处理   2篇
综合类   2篇
基础理论   7篇
  2021年   2篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Environmental Chemistry Letters - Water desalination and recycling of wastewater is a key challenge to meet water shortage issues. Thin film composite polyamide membranes are widely used for...  相似文献   
2.
Journal of Polymers and the Environment - In the present investigation, the influence of coir micro-particles and titanium carbide (TiC) nanofillers on mechanical characteristics and thermal...  相似文献   
3.
Nickel oxide nanoparticles decorated carbon nanotube nanocomposites(Ni O·CNT NCs)were prepared in a basic medium by using facile wet-chemical routes. The optical,morphological, and structural properties of Ni O·CNT NCs were characterized using Fourier transformed infra-red(FT-IR), Ultra-violet visible(UV/Vis) spectroscopy, field-emission scanning electron microscopy(FESEM), X-ray energy dispersed spectroscopy(XEDS), X-ray photoelectron spectroscopy(XPS), and powder X-ray diffraction(XRD) methods. Selective4-aminophenol(4-AP) chemical sensor was developed by a flat glassy carbon electrode(GCE, surface area: 0.0316 cm~2) fabricated with a thin-layer of NCs. Electrochemical responses including higher sensitivity, large dynamic range(LDR), limit of detection(LOD), and long-term stability towards 4-AP were obtained using the fabricated chemical sensors. The calibration curve was found linear(R~2= 0.914) over a wide range of 4-AP concentration(0.1 nmol/L–0.1 mol/L). In perspective of slope(2 × 10~(-5)μA/μM), LOD and sensitivity were calculated as 15.0 ± 0.1 pM and ~ 6.33 × 10~(-4)μA/(μM·cm) respectively. The synthesized Ni O·CNT NCs using a wet-chemical method is a significant route for the development of ultrasensitive and selective phenolic sensor based on nano-materials for environmental toxic substances. It is suggested that a pioneer and selective development of 4-AP sensitive sensor using Ni O·CNT NCs by a facile and reliable current vs voltage(I–V)method for the major application of toxic agents in biological, green environmental, and health-care fields in near future.  相似文献   
4.
Journal of Polymers and the Environment - The present investigation was performed to study the effect of titanium carbide (TiC) nanoparticles and coir fiber as hybrid reinforcements on the...  相似文献   
5.
6.
CuO nanomaterials were synthesized by a simple solution phase method using cetyltrimethylammonium bromide(CTAB) as a surfactant and their photocatalytic property was determined towards the visible-light assisted degradation of Reactive Black-5 dye. A detailed mechanism for the formation of CuO nanostructures has been proposed.The effect of various experimental parameters such as catalyst amount, dye concentration,p H and oxidizing agent on the dye degradation efficiency was studied. About 87% dye was degraded at p H 2 in the presence of CuO nanosheets under visible light. The enhanced photocatalytic activity of CuO nanosheets can be ascribed to good crystallinity, grain size,surface morphology and a strong absorption in the visible region. CuO is found to be a promising catalyst for industrial waste water treatment.  相似文献   
7.
Environmental Chemistry Letters - The removal of toxic dyes from the wastewater and industrial effluents is a major environmental challenge. Various techniques have been employed for the removal of...  相似文献   
8.
The development of membrane-based desalination and water purification technologies offers new alternatives to meet the global freshwater demand. Rapid advancement in carbon nanotube-based and graphene-based nanomaterials has drawn the attention of scientific investigators on various desalination technologies. These nanomaterials indeed offer advantageous structure, size, shape, porosity and mass transport behavior for membrane separation process. This article  reviews theoretical and experimental investigations of carbon nanotube- and graphene-based composite materials for desalination. Special attention is given to the simulation of molecular transport through these materials. Further, recent advances in the application of functionalization of carbon nanotube- and graphene-based materials for salt rejection and hydraulic permeation properties are discussed.  相似文献   
9.
Deterioration of buried metal pipes due to corrosive soil environment is a major issue worlwide. Although failures of buried pipe due to corrosive soil is an old problem, yet such failures are still uncontrollable even with the application of advanced corrosion protection technologies. Therefore, understanding factors causing corrosion of buried pipes is necessary. This article reviews factors causing corrosion of buried pipes in soils. Factors include moisture content, soil resistivity, pH, dissolved oxygen, temperature and microbial activity. Moreover, we discuss the influence of manufacturing method and the comparison of corrosion behaviour of cast iron, ductile and mild steel pipes. We found that corrosion rate of pipes increases with moisture contents up to the critical moisture value. Although pH affects corrosion, there is no relationship between corrosion and pH and the corrosion rates of buried pipes are inversely proportional to soil resistivity. Soils containing more organic matter show high resistivity. Dissolved oxygen in soil develops differential cell which accelerates corrosion of metallic pipe. Different types of bacteria present in soil develop biofilms on metallic pipes, which deteriorates pipes with time.  相似文献   
10.
The presence of contaminants in potable water is a cause of worldwide concern. In particular, the presence of metals such as arsenic, lead, cadmium, mercury, chromium can affect human health. There is thus a need for advanced techniques of water decontamination. Adsorbents based on cerium dioxide (CeO2), also named ‘ceria,’ have been used to remove contaminants such as arsenic, fluoride, lead and cadmium. Ceria and composites display high surface area, controlled porosity and morphology, and abundance of functional groups. They have already found usage in many applications including optical, semiconductor and catalysis. Exploiting their attractive features for water treatment would unravel their potential. We review the potential of ceria and its composites for the removal of toxic metal ions from aqueous medium. The article discusses toxic contaminants in water and their impact on human health; the synthesis and adsorptive behavior of ceria-based materials including the role of morphology and surface area on the adsorption capacity, best fit adsorption isotherms, kinetic models, possible mechanisms, regeneration of adsorbents; and future perspectives of using metal oxides such as ceria. The focus of the report is the generation of cost-effective oxides of rare-earth metal, cerium, in their standalone and composite forms for contaminant removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号