首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
  国内免费   1篇
废物处理   1篇
环保管理   9篇
综合类   3篇
基础理论   13篇
污染及防治   20篇
评价与监测   1篇
社会与环境   6篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   7篇
  2005年   2篇
  2003年   1篇
  2002年   4篇
  1997年   3篇
  1987年   1篇
排序方式: 共有53条查询结果,搜索用时 24 毫秒
1.

To eradicate the aquatic pollution caused by dyes, trendily the global researchers provide dedication to dye degradation using nanostructured photocatalyst. This research work is dedicated to explore an advanced, facile, bio-compact green fabricated nanostructure for water refinement. In this regard, plant-mediated syntheses of pure CeO2 and Mn-decorated CeO2 nano-powders have been inspected using seed extract of Cassia angustifolia. Investigations through UV-diffuse reflectance spectroscopy explored the significantly tuned band gap of Mn:CeO2. FT-IR spectroscopy shows the existing functional groups of high-potential phenolic compounds, proteins, and amino acids in Cassia angustifolia act as reducing and capping agents involved in the green fabricated nanostructured samples. X-ray diffraction pattern has been exposed to crystalline cubic fluorite morphology in a single phase and it leads to a regulated optimized amount of Mn on CeO2 nanostructure. The FESEM analysis predicts the morphology of CeO2 in spherical and Mn:CeO2 in flower-like structure. The HRTEM analysis has portrayed particle size of CeO2 is 11 nm and tuned Mn:CeO2 nanostructure is 9 nm. The HRTEM images revealed the average particle size in the range 10–12 nm in CeO2 and 8–9 nm in 5 mol% Mn:CeO2 nanoparticles. It showed a decrease in average particle size with an increase in Mn concentration and the reduction in size may be due to the replacement of Ce(IV) with Mn(II) ions. The elemental composition in nanostructure was predicted using energy-dispersive X-ray analysis. The rapid photocatalytic degradation efficiency of malachite green was effectually performed and compared with the kinetics model of Mn:CeO2 and pure CeO2 nanostructures. From the augmented results, tuned Mn:CeO2 was found to act as the finest green fabricated photocatalyst in the amputation of lethal and carcinogenic dye.

  相似文献   
2.
Abstract

Observations of the mass and chemical composition of particles less than 2.5 μm in aerodynamic diameter (PM2.5), light extinction, and meteorology in the urban Baltimore-Washington corridor during July 1999 and July 2000 are presented and analyzed to study summertime haze formation in the mid-Atlantic region. The mass fraction of ammoniated sulfate (SO4 2-) and carbonaceous material in PM2.5 were each ~50% for cleaner air (PM2.5 < 10 μg/m3) but changed to ~60% and ~20%, respectively, for more polluted air (PM2.5 > 30 μg/m3). This signifies the role of SO4 2- in haze formation. Comparisons of data from this study with the Interagency Monitoring of Protected Visual Environments network suggest that SO4 2? is more regional than carbonaceous material and originates in part from upwind source regions. The light extinction coefficient is well correlated to PM2.5 mass plus water associated with inorganic salt, leading to a mass extinction efficiency of 7.6 ± 1.7 m2/g for hydrated aerosol. The most serious haze episode occurring between July 15 and 19, 1999, was characterized by westerly transport and recirculation slowing removal of pollutants. At the peak of this episode, 1-hr PM2.5 concentration reached ~45 μg/m3, visual range dropped to ~5 km, and aerosol water likely contributed to ~40% of the light extinction coefficient.  相似文献   
3.
The Minnesota Particulate Matter 2.5 (PM2.5) Source Apportionment Study was undertaken to explore the utility of PM2.5 mass, element, ion, and carbon measurements from long-term speciation networks for pollution source attribution. Ambient monitoring data at eight sites across the state were retrieved from the archives of the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and analyzed by an Effective Variance – Chemical Mass Balance (EV-CMB) receptor model with region-specific geological source profiles developed in this study. PM2.5 was apportioned into contributions of fugitive soil dust, calcium-rich dust, taconite (low grade iron ore) dust, road salt, motor vehicle exhaust, biomass burning, coal-fired utility, and secondary aerosol. Secondary sulfate and nitrate contributed strongly (49–71% of PM2.5) across all sites and was dominant (≥60%) at IMPROVE sites. Vehicle exhausts accounted for 20–70% of the primary PM2.5 contribution, largely exceeding the proportion in the primary PM2.5 emission inventory. The diesel exhaust contribution was separable from the gasoline engine exhaust contribution at the STN sites. Higher detection limits for several marker elements in the STN resulted in non-detectable coal-fired boiler contributions which were detected in the IMPROVE data. Despite the different measured variables, analytical methods, and detection limits, EV-CMB results from a nearby IMPROVE-STN non-urban/urban sites showed similar contributions from regional sources – including fugitive dust and secondary aerosol. Seasonal variations of source contributions were examined and extreme PM2.5 episodes were explained by both local and regional pollution events.  相似文献   
4.
Community-based collaborative groups involved in public natural resource management are assuming greater roles in planning, project implementation, and monitoring. This entails the capacity of collaborative groups to develop and sustain new organizational structures, processes, and strategies, yet there is a lack of understanding what constitutes collaborative capacity. In this paper, we present a framework for assessing collaborative capacities associated with community-based public forest management in the US. The framework is inductively derived from case study research and observations of 30 federal forest-related collaborative efforts. Categories were cross-referenced with literature on collaboration across a variety of contexts. The framework focuses on six arenas of collaborative action: (1) organizing, (2) learning, (3) deciding, (4) acting, (5) evaluating, and (6) legitimizing. Within each arena are capacities expressed through three levels of social agency: individuals, the collaborative group itself, and participating or external organizations. The framework provides a language and set of organizing principles for understanding and assessing collaborative capacity in the context of community-based public forest management. The framework allows groups to assess what capacities they already have and what more is needed. It also provides a way for organizations supporting collaboratives to target investments in building and sustaining their collaborative capacities. The framework can be used by researchers as a set of independent variables against which to measure collaborative outcomes across a large population of collaborative efforts.  相似文献   
5.
Remote sensing has emerged as one of the major techniques for the analysis and delineation of large floods. This analysis can provide data invaluable for the hydrological management of large river systems. A need for information on the extent of floodplain inundation for the lower reaches of the largest river in the UK was met by a search through Landsat images of floods and the analysis of the best example recorded. Automated classification of the Landsat imagery of this flood on the river Severn in 1977 was used to provide estimates of the extent and spatial distribution of inundation. Flood images were generated using the Plessey IDP 3000 image processor, and the maps derived accorded well with aerial photography and qualitative flood information. Three distinct floodplain environments were delineated and flood images produced by different spectral bands compared. Specific questions prompted by flood hazard management and concerning the processes and extent of flooding were answered by the Landsat data analysis. Management of the flood risk of large rivers is expensive and remote sensing data is a relatively cheap and effective way of monitoring control works and providing data for the prediction of the effects of future hydrological works. Remote sensing is a practical way in which spatial information concerning the behavior of large dynamic systems can be obtained both quickly and relatively cheaply.  相似文献   
6.
A recent cost-effectiveness analysis of a residential radon remediation programme considered and highlighted many areas of uncertainty in the parameters chosen for the analysis. One assumption not challenged in the study was the benefits stream profile adopted. There are several different ways of loading the benefits in terms of life years into the cost-effectiveness model and several of these are explored and the results are reported in this study. The benefits profile depends upon the lead-time to cancer manifestation post environmental carcinogen (radon) exposure. The literature reviewed suggests that there are many options for loading benefits to radon-induced lung cancer prevention programmes. In this study, the alternative benefits stream profiles are explored and their implications for the cost-effectiveness ratio are examined. Adopting different benefits stream profiles to the model results in a range of cost-effectiveness ratios from 14912.90 pounds per life year gained to 52416.27 pounds per life year gained. The preferred model is reported where the life years gained are assumed to be equally distributed over the last 15 years of the 40-year time horizon of the analysis (Y25-40) and the corresponding cost-effectiveness ratio is 37,943 pounds per life year gained.  相似文献   
7.
Air pollutants often have adverse effects on human health. This paper investigates and ranks a set of policy and technological interventions intended to reduce such health costs in the high population density areas of South Africa. It initially uses a simple benefit-cost rule, later extended to capture sectoral employment impacts. Although the focus of state air quality legislation is on industrial pollutants, the most efficient interventions were found to be at household level. These included such low-cost interventions as training householders to place kindling above rather than below the coal in a fireplace and insulating roofs. The first non-household policies to emerge involved vehicle fuels and technologies. Most proposed industrial interventions failed a simple cost-benefit test. The paper's policy messages are that interventions should begin with households and that further industry controls are not yet justifiable in their present forms as these relate to the health care costs of such interventions.  相似文献   
8.
Geology has been highlighted by a number of authors as a key factor in high indoor radon levels. In the light of this, this study examines the application of seasonal correction factors to indoor radon concentrations in the UK. This practice is based on an extensive database gathered by the National Radiological Protection Board over the years (small-scale surveys began in 1976 and continued with a larger scale survey in 1988) and reflects well known seasonal variations observed in indoor radon levels. However, due to the complexity of underlying geology (the UK arguably has the world's most complex solid and surficial geology over the shortest distances) and considerable variations in permeability of underlying materials it is clear that there are a significant number of occurrences where the application of a seasonal correction factor may give rise to over-estimated or under-estimated radon levels. Therefore, the practice of applying a seasonal correction should be one that is undertaken with caution, or not at all. This work is based on case studies taken from the Northamptonshire region and comparisons made to other permeable geologies in the UK.  相似文献   
9.
Positive matrix factorization (PMF) and effective variance (EV) solutions to the chemical mass balance (CMB) were applied to PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) mass and chemically speciated measurements for samples taken from 2008 to 2010 at the Atlanta, Georgia, and Birmingham, Alabama, sites. Commonly measured PM2.5 mass, elemental, ionic, and thermal carbon fraction concentrations were supplemented with detailed nonpolar organic speciation by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Source contribution estimates were calculated for motor vehicle exhaust, biomass burning, cooking, coal-fired power plants, road dust, vegetative detritus, and secondary sulfates and nitrates for Atlanta. Similar sources were found for Birmingham, with the addition of an industrial source and the separation of biomass burning into open burning and residential wood combustion. EV-CMB results based on conventional species were qualitatively similar to those estimated by PMF-CMB. Secondary ammonium sulfate was the largest contributor, accounting for 27–38% of PM2.5, followed by biomass burning (21–24%) and motor vehicle exhaust (9–24%) at both sites, with 4–6% of PM2.5 attributed to coal-fired power plants by EV-CMB. Including organic compounds in the EV-CMB reduced the motor vehicle exhaust and biomass burning contributions at both sites, with a 13–23% deficit for PM2.5 mass. The PMF-CMB solution showed mixing of sources within the derived factors, both with and without the addition of speciated organics, as is often the case with complex source mixtures such as those at these urban-scale sites. The nonpolar TD-GC/MS compounds can be obtained from existing filter samples and are a useful complement to the elements, ions, and carbon fractions. However, they should be supplemented with other methods, such as TD-GC/MS on derivitized samples, to obtain a wider range of polar compounds such as sterols, sugars, and organic acids. The PMF and EV solutions to the CMB equations are complementary to, rather than replacements for, each other, as comparisons of their results reveal uncertainties that are not otherwise evident.

Implications:?Organic markers can be measured on currently acquired PM2.5 filter samples by thermal methods. These markers can complement element, ion, and carbon fraction measurements from long-term speciation networks. Applying the positive matrix factorization and effective variance solutions for the chemical mass balance equations provides useful information on the accuracy of the source contribution estimates. Nonpolar compounds need to be complemented with polar compounds to better apportion cooking and secondary organic aerosol contributors.  相似文献   
10.
In this study, the efficiency of six ion exchange resins to reduce the dissolved organic matter (DOM) from a biologically treated newsprint mill effluent was evaluated and the dominant removal mechanism of residual organics was established using advanced organic characterisations techniques. Among the resins screened, TAN1 possessed favourable Freundlich parameters, high resin capacity and solute affinity, closely followed by Marathon MSA and Marathon WBA. The removal efficiency of colour and lignin residuals was generally good for the anion exchange resins, greater than 50% and 75% respectively. In terms of the DOM fractions removal measured through liquid chromatography–organic carbon and nitrogen detector (LC–OCND), the resins mainly targeted the removal of humic and fulvic acids of molecular weight ranging between 500 and 1000 g mol?1, the portion expected to contribute the most to the aromaticity of the effluent. For the anion exchange resins, physical adsorption operated along with ion exchange mechanism assisting to remove neutral and transphilic acid fractions of DOM. The column studies confirmed TAN1 being the best of those screened, exhibited the longest mass transfer zone and maximum treatable volume of effluent. The treatable effluent volume with 50% reduction in dissolved organic carbon (DOC) was 4.8 L for TAN1 followed by Marathon MSA – 3.6 L, Marathon 11 – 2.0 L, 21K-XLT – 1.5 L and Marathon WBA – 1.2 L. The cation exchange resin G26 was not effective in DOM removal as the maximum DOC removal obtained was only 27%. The resin capacity could not be completely restored for any of the resins; however, a maximum restoration up to 74% and 93% was achieved for TAN1 and Marathon WBA resins. While this feasibility study indicates the potential option of using ion exchange resins for the reclamation of paper mill effluent, the need for improving the regeneration protocols to restore the resin efficiency is also identified. Similarly, care should be taken while employing LC–OCND for characterising resin-treated effluents, as the resin degradation is expected to contribute some organic carbon moieties misleading the actual performance of resin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号