首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
废物处理   1篇
污染及防治   1篇
  2019年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 7 毫秒
1
1.
The degradation of fats during thermophilic composting was investigated by adding lard of four different mixing ratios (0, 33.3, 42.9 and 50% on a dry weight basis) to dog food used as a model substrate for organic waste. The lard added at the mixing ratio of 33.3% did not inhibit the decomposition of organic matter in the dog food, with lard itself beginning decomposition after decay of more easily decomposable organic compounds of the dog food, 84 h from the start of composting. The percentage of lard decomposition reached as high as 29.3% by the end of 8 days of composting. By contrast, the decomposition of organic matter in the processed dog food was apparently inhibited when the portion of lard was greater than 33.3%, especially at the earliest stage of composting. It is possible, however, that lard would decompose vigorously once decomposition has begun, even when the ratio of lard is as high as 50%. The percentages of lard decomposition in composting mixtures with 42.9 and 50% lard were 15.7 and 9.50%, respectively, thus the higher the mixing ratio of lard, the lower the percentage of lard decomposition. However, it was found that the maximum decomposition rate of the lard was similar for all of the ratios tested; that is, approximately 5.0 x 10(-3) g carbon h(-1).  相似文献   
2.

In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0–1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号