首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
污染及防治   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Biostimulation, bioaugmentation and dual-bioaugmentation strategies were investigated in this study for efficient bioremediation of water co-contaminated with 1,2-dichloroethane (1,2-DCA) and heavy metals, in a microcosm set-up. 1,2-DCA concentration was periodically measured in the microcosms by gas chromatographic analysis of the headspace samples, while bacterial population and diversity were determined by standard plate count technique and Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR–DGGE) analysis, respectively. Dual-bioaugmentation, proved to be most effective exhibiting 22.43%, 26.54%, 19.58% and 30.49% increase in 1,2-DCA degradation in microcosms co-contaminated with As3+, Cd2+, Hg2+ and Pb2+, respectively, followed by bioaugmentation and biostimulation. Dual-bioaugmented microcosms also exhibited the highest increase in the biodegradation rate constant (k1) resulting in 1.76-, 2-, 1.7- and 2.1-fold increase in As3+, Cd2+, Hg2+ and Pb2+ co-contaminated microcosms respectively, compared to the untreated microcosms. Dominant bacterial strains obtained from the co-contaminated microcosms were found to belong to the genera Burkholderia, Pseudomonas, Bacillus, Enterobacter and Bradyrhizobium, previously reported for 1,2-DCA and other chlorinated compounds degradation. PCR–DGGE analysis revealed variation in microbial diversity over time in the different co-contaminated microcosms. Results obtained in this study have significant implications for developing innovative bioremediation strategies for treating water co-contaminated with chlorinated organics and heavy metals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号