首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
污染及防治   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.

Biofuels extracted from plant biomass can be used as fuel in CI engines to lower a hazardous atmospheric pollutant and mitigate climate risks. Furthermore, its implementation is hampered by inevitable obstacles such as feedstocks and the crop area required for their cultivation, leading to a lack of agricultural land for the expansion of food yields. Despite this, microalgae have been discovered to be the most competent and unwavering source of biodiesel due to their distinguishing characteristics of being non-eatable and requiring no cropland for cultivation. The objectives of this paper was to look into the potential of a novel, formerly underappreciated biodiesel from microalgae species which could be used as a fuel substitute. Transesterification is being used to extract the biodiesel. Microalgae are blended with petroleum diesel in percentage to create microalgae blends (MAB) as needed for experimentation. The impact of biodiesel on performance as well as exhaust emission attributes of a 1-cylinder diesel engine was experimentally studied. Compared to petroleum diesel, different blend of microalgae biodiesel showed a decline in torque and hence brake power, resulting in an average fall of 7.14 % in brake thermal efficiency and 11.54 % increase in brake-specific fuel consumption. There were wide differences in exhaust emission characteristics, including carbon monoxide and hydrocarbon, as the blend ratio in diesel increased. Moreover, nitrogen oxides and carbon dioxides increase in all algae biodiesel blends, but they are still within the acceptable range of petroleum diesel.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号