首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环保管理   1篇
污染及防治   6篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  2003年   1篇
  1996年   1篇
  1987年   1篇
排序方式: 共有7条查询结果,搜索用时 156 毫秒
1
1.
Many numerical models which describe the movement of a separate organic liquid phase in the subsurface require information about the relationships between capillary pressure and saturation, and between relative permeability and saturation. An evaluation of the information available for these relationships suggests that substantial discrepancies may be introduced into simulations if estimated, rather than measured, data are employed. The purpose of this study was to quantify these deviations. Two-phase displacement simulations were performed in one and two dimensions for several organic liquid-water systems. Both constant-head and constant-flux boundary conditions were employed at a variety of flow rates and time scales, using both measurements and estimates of capillary pressure and relative permeability for a sandy aquifer material. The results demonstrate that the use of estimated transport relationships produces significantly different predictions of organic liquid migration. The magnitude of the deviations between predictions may be as high as 25% or more after relatively short displacement periods, depending on the boundary conditions of the simulated scenario, as well as on the physical characteristics of the two-phase system. For the systems examined, most of the deviations resulted from the estimates for relative permeability to the organic liquid. Thus, improved methods for the estimation of the relative permeability to the organic liquid are needed to reduce the uncertainty in displacement simulations.  相似文献   
2.
Most contamination of residential property soil with dioxin-like compounds occurs as a result of proximity to industrial activity that produces such compounds and, outside the industrially impacted zone, the soil concentrations are at background levels. However, as part of the University of Michigan Dioxin Exposure Study, residential properties in the lower peninsula of Michigan, USA, were identified that were located far enough from known sources of these compounds that the soil concentrations should have been at background levels and yet the toxic equivalent (TEQ) of some properties' soil was greater than 2.5 standard deviations above the mean background level. In the three cases presented here from Midland/Saginaw Counties, the anomalously high-TEQ values were primarily due to the presence of polychlorinated dibenzofurans. Based on interviews with the residents and a comparison of soil congener profiles, it was deduced that these values resulted from anthropogenic soil movement from historically contaminated areas. In the cases from Jackson/Calhoun Counties, the unusually high-TEQ values were primarily due to polychlorinated biphenyls. In the case profiled here, it appears that the soil became contaminated through sandblasting to remove paint from the swimming pool. This study identified two mechanisms for soil contamination outside zones of industrial impact; thus, an assumption of background levels of soil contamination outside industrial zones may not be valid.  相似文献   
3.
ABSTRACT: A key parameter in modeling two-phase flow phenomena is relative permeability. It is important to understand which variables influence relative permeability, especially since so few measurements of relative permeability have been made for typical contaminants at hazardous waste sites. This paper focuses on the effect of five variables on relative permeability: intrinsic permeability, pore-size distribution, viscosity ratio, interfacial tension, and wettability, by critically reviewing previously published relative permeability experiments. The wide variability in the functional relationship between relative permeability and saturation should be considered in attempts to model two-phase flow.  相似文献   
4.
Subsurface heterogeneity at sites contaminated with nonaqueous phase liquids (NAPLs) reduces the effectiveness of traditional remediation measures. One cause may be the increased proportion of NAPL that is hydraulically isolated due to capillary trapping in heterogeneously-wetted materials. This study examines the wettability of ten materials, ranging from minerals, such as calcite and dolomite, to carbonaceous materials, such shale and coal, in air and water, NAPL and air, and NAPL and water systems. The wettability differed depending on which phase the solid material was initially immersed in: the less crystalline solids, if initially contacted by water were water-wet, but if initially contacted by NAPL were NAPL-wet. This difference, termed here wettability hysteresis, was observed for a suite of halogenated NAPLs and was independent of equilibration time. The degree of wettability hysteresis was greatest in the NAPL and water systems, with the magnitude of the difference increasing with the carbonaceous materials. Since the degree of capillary trapping in subsurface materials is related to wettability, the phenomenon of wettability hysteresis suggests that system history is a factor that may increase the heterogeneity of NAPL source zones.  相似文献   
5.
The modeling of transport of organic liquid contaminants through the vadose zone often requires three-phase relative permeabilities. Since these are difficult to measure, predictive models are usually used. The objective of this study is to assess the ability of eight common models to predict the drainage relative permeability to oil in a three-phase system (water-oil-air). A comparison of the models' estimates using data set from Oak [Oak, M.J., 1990. Three-phase relative permeability of water-wet Berea. In: Seventh Symposium on Enhanced Oil Recovery, Paper SPE/Doe 20183. Tulsa, OK, April 22-25] showed that they provide very different predictions for the same system. The goodness of the models does not increase with the amount of data or computation that the models require. Also, the calculations showed how different interpretations of the models and of the terminology associated with them can significantly impact the predictions. Thus, considerable error may be introduced into the simulations of organic liquid transport in the vadose zone depending on the selection and interpretation of the three-phase relative permeability model.  相似文献   
6.
The presence of surface-active solutes such as organic acids and bases may have a profound influence on the transport of organic liquid contaminants through their impact on the constitutive relationship of capillary pressure vs. saturation. This relationship is a function of the interfacial tension and wettability of the system, which, in turn, depend on the pH and the concentration of organic acids and bases that are present. This study examines the impact of pH and the concentration on the interfacial tension, contact angle, and capillary pressure of systems consisting of tetrachloroethylene, water, and quartz containing either octanoic acid or dodecylamine. In general, the ionic form of the solute tended to remain in the aqueous phase and reduced the capillary pressure through its impact on the interfacial tension and contact angle; on the other hand, the neutral form of the solute partitioned into the organic liquid phase and had a lesser impact on the capillary pressure for the same total mass of solute. A comparison of these data with data generated in previous research in similar systems where o-xylene was the organic liquid showed that the trends are analogous. Thus, the behavior of these two solvent systems seems to be driven primarily by the aqueous phase speciation of the solute, and the differences between the capillary pressure relationships for the two systems could be attributed to the pure system interfacial tension.  相似文献   
7.
Capillary pressure/saturation data are often difficult and time consuming to measure, particularly for non-water-wetting porous media. Few capillary pressure/saturation predictive models, however, have been developed or verified for the range of wettability conditions that may be encountered in the natural subsurface. This work presents a new two-phase capillary pressure/saturation model for application to the prediction of primary drainage and imbibition relations in fractional wettability media. This new model is based upon an extension of Leverett scaling theory. Analysis of a series of DNAPL/water experiments, conducted for a number of water/intermediate and water/organic fractional wettability systems, reveals that previous models fail to predict observed behavior. The new Leverett–Cassie model, however, is demonstrated to provide good representations of these data, as well as those from two earlier fractional wettability studies. The Leverett–Cassie model holds promise for field application, based upon its foundation in fundamental scaling principles, its requirement for relatively few and physically based input parameters, and its applicability to a broad range of wetting conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号