首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
安全科学   7篇
废物处理   2篇
环保管理   6篇
综合类   5篇
基础理论   10篇
污染及防治   20篇
评价与监测   4篇
社会与环境   1篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2016年   6篇
  2012年   1篇
  2011年   4篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   3篇
  1999年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
  1982年   5篇
  1975年   1篇
排序方式: 共有55条查询结果,搜索用时 62 毫秒
1.
Etoposide susceptibility to microbiological breakdown was studied in a batch biotransformation system, in the presence or absence of artificial wastewater containing nutrients, salts and activated sludge at two concentration levels. The primary focus of the present study was to study etoposide transformation products by ultra-high performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry (MS/MS). Data-dependent experiments combining full-scan MS data with product ion spectra were acquired to identify the molecular ions of etoposide transformation products, to propose the molecular formulae and to elucidate their chemical structures. Due to the complexity of the matrix, visual inspection of the chromatograms showed no clear differences between the controls and the treated samples. Therefore, the software package MZmine was used to facilitate the identification of the transformation products and speed up the data analysis. In total, we propose five transformation products; among them, four are described as etoposide transformation products for the first time. Even though the chemical structures of these new compounds cannot be confirmed due to the lack of standards, their molecular formulae can be used to target them in monitoring studies.  相似文献   
2.
3.
The results of an inter-laboratory comparison exercise to determine cytostatic anticancer drug residues in surface water, hospital wastewater and wastewater treatment plant effluent are reported. To obtain a critical number of participants, an invitation was sent out to potential laboratories identified to have the necessary knowledge and instrumentation. Nine laboratories worldwide confirmed their participation in the exercise. The compounds selected (based on the extent of use and laboratories capabilities) included cyclophosphamide, ifosfamide, 5-fluorouracil, gemcitabine, etoposide, methotrexate and cisplatinum. Samples of spiked waste (hospital and wastewater treatment plant effluent) and surface water, and additional non-spiked hospital wastewater, were prepared by the organising laboratory (Jo?ef Stefan Institute) and sent out to each participant partner for analysis. All analytical methods included solid phase extraction (SPE) and the use of surrogate/internal standards for quantification. Chemical analysis was performed using either liquid or gas chromatography mass (MS) or tandem mass (MS/MS) spectrometry. Cisplatinum was determined using inductively coupled plasma mass spectrometry (ICP-MS). A required minimum contribution of five laboratories meant that only cyclophosphamide, ifosfamide, methotrexate and etoposide could be included in the statistical evaluation. z-score and Q test revealed 3 and 4 outliers using classical and robust approach, respectively. The smallest absolute differences between the spiked values and the measured values were observed in the surface water matrix. The highest within-laboratory repeatability was observed for methotrexate in all three matrices (CV?≤?12 %). Overall, inter-laboratory reproducibility was poor for all compounds and matrices (CV 27–143 %) with the only exception being methotrexate measured in the spiked hospital wastewater (CV?=?8 %). Random and total errors were identified by means of Youden plots.  相似文献   
4.
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 that (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant detoxification and repair. In this paper, we discuss the linkage of the temporal variability of apoplastic ascorbate with the diurnal variability of defense mechanisms in plants and compare this variability with daily maximum O3 concentration and diurnal uptake and entry of O3 into the plant through stomata. We describe the quantitative evidence on temporal variability in concentration and uptake and find that the time incidence for maximum defense does not necessarily match diurnal patterns for maximum O3 concentration or maximum uptake. We suggest that the observed out-of-phase association of the diurnal patterns for the above three processes produces a nonlinear relationship that results in a greater response from the higher hourly average O3 concentrations than from the lower or mid-level values. The fact that these out-of-phase processes affect the relationship between O3 exposure/dose and vegetation effects ultimately impact the ability of flux-based indices to predict vegetation effects accurately for purposes of standard setting and critical levels. Based on the quantitative aspect of temporal variability identified in this paper, we suggest that the inclusion of a diurnal pattern for detoxification in effective flux-based models would improve the predictive characteristics of the models. While much of the current information has been obtained using high O3 exposures, future research results derived from laboratory biochemical experiments that use short but elevated O3 exposures should be combined with experimental results that use ambient-type exposures over longer periods of time. It is anticipated that improved understanding will come from future research focused on diurnal variability in plant defense mechanisms and their relationship to the diurnal variability in ambient O3 concentration and stomatal conductance. This should result in more reliable O3 exposure standards and critical levels.  相似文献   
5.
6.
Environmental Science and Pollution Research - This study reports how adding a membrane filter (0.45-μm cellulose nitrate filter) between a glass fibre filter and the solid phase extraction...  相似文献   
7.
8.
1977~1998年间,在苏格兰西部的艾尔萨克雷格对收集到的塘鹅蛋中的多氯联苯(PCB)同类物进行了回顾性分析.对一些年份所收集的塘鹅蛋中每年选择8~10个对其PCB同类物浓度范围分别进行了分析.所有的同类物在几年之内浓度都降在低,但不同的同类物降解速率不同.  相似文献   
9.
Pharmacologically active substances used to treat human and animal illnesses can enter the aquatic environment via effluents from wastewater treatment plants or in the case of veterinary drugs directly through liquid manure discharge. Some of these substances enter the environment either as the parent compound or as active/inactive metabolites. Due to their pharmacological activity, their determination and understanding their behavior and fate in the environment are important. The scope of this paper was to develop an analytical procedure to determine common pharmaceutical residues in wastewaters. Pharmacologically active substances were chosen according to their wide spread application in Slovenia and Central Europe and are members of analgesics, e.g., non-steroidal anti-inflammatory drugs: ibuprofen, naproxen, ketoprofen and diclofenac. Selected compounds were isolated from synthetic water using a novel SPE sorbent Strata X. Due to the non-volatile nature of these compounds they were first silylised prior to gas chromatographic-mass spectrometric detection. The developed procedure was tested with synthetic wastewaters and their extraction efficiency (>84%) and method limits of detection (2-6 ng L(-1)) were determined. Our procedure has been adopted and optimised for "real" water samples and applied to eleven drinking and ten river water samples from Slovenia. The results showed no traces of NSAIDs in all potable water samples and low-range contamination (ng L(-1)) of Slovene rivers. These results show that NSAIDs contamination of Slovene waters is comparable with published results of water contamination in Central Europe.  相似文献   
10.
Multiple Antibiotic Resistance (MAR) analysis and regression modeling techniques were used to identify surface water areas impacted by fecal pollution from human sources, and to determine the effects of land use on fecal pollution in Murrells Inlet, a small, urbanized, high-salinity estuary located between Myrtle Beach and Georgetown, South Carolina. MAR analysis was performed to identify areas in the estuary that are impacted by human-source fecal pollution. Additionally, regression analysis was performed to determine if an association exists between land use and fecal coliform densities over the ten-year period from 1989 to 1998. Land-use variables were derived using Geographic Information System (GIS) techniques and were used in the regression analysis.MAR analyses were conducted by comparing the frequency and patterns of antibiotic resistance found in Escherichia coli isolates derived from surface water samples and from sewage sources in the Murrells Inlet sewage collection system. The MAR results suggest that the majority of the fecal pollution detected in the Murrells Inlet estuary may be from non-human sources, including fecal coliforms isolated from areas in close proximity to high densities of active septic tanks.A MAR Index, which measures the frequency of antibiotic resistance, was calculated for each of twenty-three water samples and nine sewage samples. The antibiotic resistance pattern comparisons were performed using cluster analysis. Although the MAR indices indicated that several surface water sites had potential human-source contamination, the cluster analysis suggests that only one sampling site had MAR patterns that were similar to those found in the sewage samples. This site was in close proximity to several large pleasure boats as well as a sewage collection system lift station, but was not near areas with active septic tanks. The results of the regression analysis also suggest that sewage sources and rainfall runoff from urbanized areas may contribute to fecal pollution in the estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号