首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   4篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  1998年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Environmental Science and Pollution Research - Nano-titania (n-TiO2), due to its unique photocatalytic and hydrophobic properties, can be used to prepare self-cleaning cement-based smart building...  相似文献   
2.
Environmental Science and Pollution Research - Carbon porous materials obtained through KOH activation of a furfural?+?hydroquinone?+?urotropine mixture were applied as...  相似文献   
3.
Environmental Science and Pollution Research - Mining is a significant part of the transforming economy, which is generally considered as essential as well as social evil at the same time. It is...  相似文献   
4.
Water-quality parameters and concentrations of various metals in bed sediments of the River Kali and the River Hindon in India were analysed to understand their behaviour in subtropical fluvial systems. Variations in the physico-chemical parameters of the river water and metal content in the bed sediments were recorded in four seasons of the year (post-monsoon, winter, summer and monsoon). Results show that water and sediments contain high cadmium (Cd) and Zinc (Zn). Total and soluble Cd and Zn profiles show that in summer, metals in the water phase exist predominantly in the bound form. Cd and Zn in bed sediments increase from the post-monsoon to the summer season. During and after the monsoon season, metal concentrations in sediments fall rapidly. Correlation coefficients of metals in sediments represent their common source and identical behaviour during transport.  相似文献   
5.
Conventional solar photovoltaic (PV) module converts the light component of solar radiation into electrical power, and heat part is absorbed by module increasing its operating temperature. Combined PV module and heat exchanger generating both electrical and thermal powers is called as hybrid photovoltaic/thermal (PV/T) solar system. The paper presents the design of a PV/T collector, made with thin film PV technology and a spiral flow absorber, and a simulation model, developed through the system of several mathematical equations, to evaluate the performance of PV/T water collectors. The effect of various parameters on the thermal and electrical efficiency has been investigated to obtain optimum combination of parameters. Finally, a numerical simulation has been carried out for the daily and annual yield of the proposed PV/T collector, and comparison with a standard PV module is discussed.  相似文献   
6.

Free radical or oxidative stress may be a fundamental mechanism underlying several human neurologic diseases. Therapy using free radical scavengers (antioxidants) has the potential to prevent, delay, or ameliorate many neurologic disorders. However, the biochemistry of oxidative pathobiology is complex, and optimum antioxidant therapeutic options may vary and need to be tailored to individual diseases. In vitro and animal model studies support the potential beneficial role of various antioxidant compounds in neurological disease. Antioxidants generally play an important role in reducing or preventing the cell damage and other changes which occur in the cells like mitochondrial dysfunction, DNA mutations, and lipid peroxidation in the cell membrane. Based on their mechanism of action, antioxidants can be used to treat various neurological disorders like Huntington’s disease, Alzheimer’s disease, and Parkinson’s disease. Vitamin E has a scavenging action for reactive oxygen species (ROS) and also prevents the lipid peroxidation. Creatine generally reduces the mitochondrial dysfunction in Parkinson’s disease (PD) patients. Various metal chelators are used in PD for the prevention of accumulation of the metals. Superoxidase dismutase (SOD), lipases, and proteases act as repair enzymes in patients with AD. Accordingly, the antioxidant defense system is found to be most useful for treating various neurological disorders.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号