首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
废物处理   1篇
环保管理   1篇
污染及防治   2篇
  2019年   2篇
  2003年   1篇
  1982年   1篇
排序方式: 共有4条查询结果,搜索用时 109 毫秒
1
1.
The association between particulate pollution and cardiovascular morbidity and mortality is well established. While the cardiovascular effects of nationally regulated criteria pollutants (e.g., fine particulate matter [PM2.5] and nitrogen dioxide) have been well documented, there are fewer studies on particulate pollutants that are more specific for traffic, such as black carbon (BC) and particle number (PN). In this paper, we synthesized studies conducted in the Greater Boston Area on cardiovascular health effects of traffic exposure, specifically defined by BC or PN exposure or proximity to major roadways. Large cohort studies demonstrate that exposure to traffic-related particles adversely affect cardiac autonomic function, increase systemic cytokine-mediated inflammation and pro-thrombotic activity, and elevate the risk of hypertension and ischemic stroke. Key patterns emerged when directly comparing studies with overlapping exposure metrics and population cohorts. Most notably, cardiovascular risk estimates of PN and BC exposures were larger in magnitude or more often statistically significant compared to those of PM2.5 exposures. Across multiple exposure metrics (e.g., short-term vs. long-term; observed vs. modeled) and different population cohorts (e.g., elderly, individuals with co-morbidities, young healthy individuals), there is compelling evidence that BC and PN represent traffic-related particles that are especially harmful to cardiovascular health. Further research is needed to validate these findings in other geographic locations, characterize exposure errors associated with using monitored and modeled traffic pollutant levels, and elucidate pathophysiological mechanisms underlying the cardiovascular effects of traffic-related particulate pollutants.

Implications: Traffic emissions are an important source of particles harmful to cardiovascular health. Traffic-related particles, specifically BC and PN, adversely affect cardiac autonomic function, increase systemic inflammation and thrombotic activity, elevate BP, and increase the risk of ischemic stroke. There is evidence that BC and PN are associated with greater cardiovascular risk compared to PM2.5. Further research is needed to elucidate other health effects of traffic-related particles and assess the feasibility of regulating BC and PN or their regional and local sources.  相似文献   

2.
This Korea-China study monitored the phenomena of sandstorms and significant dustfall (SD) from 1997 to 2000. The analysis of our data included ground measurements of dust concentration, visibility, satellite imagery, aircraft and lidar observations. In addition, an estimation of atmospheric loadings and a studyon the relationship between dust concentrations and visibilitywere carried out. The movement and invasion of dust clouds toKorea were clearly identified with meteorological and satellitedata. The increasing concentrations of TSP and PM10 concurredwell with the satellite information. From case studies, weestimated that atmospheric loadings of a dust cloud were over 1million ton and that the deposition over the Korean Peninsulawas in the range from 46 000 to 86 000 tons. For SD withvisibility of 3 km, we predict TSP 659 g m-3 and PM10 493 g m-3. We recommend the issuance of an SD Watch(advisory) and an SD Warning for the general public.  相似文献   
3.
Numerous studies have reported a positive association between ambient fine particles and daily mortality, but little is known about the particle properties or environmental factors that may contribute to these effects. This study assessed potential modification of radon on PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm)-associated daily mortality in 108 U.S. cities using a two-stage statistical approach. First, city- and season-specific PM2.5 mortality risks were estimated using over-dispersed Poisson regression models. These PM2.5 effect estimates were then regressed against mean city-level residential radon concentrations to estimate overall PM2.5 effects and potential modification by radon. Radon exposure estimates based on measured short-term basement concentrations and modeled long-term living-area concentrations were both assessed. Exposure to PM2.5 was associated with total, cardiovascular, and respiratory mortality in both the spring and the fall. In addition, higher mean city-level radon concentrations increased PM2.5-associated mortality in the spring and fall. For example, a 10 µg/m3 increase in PM2.5 in the spring at the 10th percentile of city-averaged short-term radon concentrations (21.1 Bq/m3) was associated with a 1.92% increase in total mortality (95% CI: 1.29, 2.55), whereas the same PM2.5 exposure at the 90th radon percentile (234.2 Bq/m3) was associated with a 3.73% increase in total mortality (95% CI: 2.87, 4.59). Results were robust to adjustment for spatial confounders, including average planetary boundary height, population age, percent poverty and tobacco use. While additional research is necessary, this study suggests that radon enhances PM2.5 mortality. This is of significant regulatory importance, as effective regulation should consider the increased risk for particle mortality in cities with higher radon levels.

Implications: In this large national study, city-averaged indoor radon concentration was a significant effect modifier of PM2.5-associated total, cardiovascular, and respiratory mortality risk in the spring and fall. These results suggest that radon may enhance PM2.5-associated mortality. In addition, local radon concentrations partially explain the significant variability in PM2.5 effect estimates across U.S. cities, noted in this and previous studies. Although the concept of PM as a vector for radon progeny is feasible, additional research is needed on the noncancer health effects of radon and its potential interaction with PM. Future air quality regulations may need to consider the increased risk for particle mortality in cities with higher radon levels.  相似文献   

4.
ABSTRACT: This paper presents research conducted on tidal power generation utilizig atmospheric pressure or air recirculation. The proposed methods in this paper differ from conventional methods. That is, they require simple and relatively inexpensive power generating facilities that would convert the potential energy of the tides into kine tic energy of air for driving the air turbines in a power plant. The characteristics of the new methods are as follows: (1) in tidal power generation utilizing the atmospheric pressure, the air pressure exerted on an air turbine can be maintained at 1 atm regardless of the water head; (2) in tidal power generation utilizing the air recirculation, the air pressure exerted on an air turbine can be made twice as high as the available water head; (3) higher tidal energy conversion efficiency can be obtained by flowing larger quantities of water in a shorter time period; (4) the generating turbines can be located at a convenient place remote from the reservoir; and (5) equipment corrosion due to salt is minimized.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号