首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   9篇
  国内免费   12篇
安全科学   9篇
废物处理   18篇
环保管理   93篇
综合类   49篇
基础理论   119篇
环境理论   2篇
污染及防治   163篇
评价与监测   69篇
社会与环境   21篇
灾害及防治   1篇
  2023年   11篇
  2022年   19篇
  2021年   26篇
  2020年   8篇
  2019年   11篇
  2018年   15篇
  2017年   18篇
  2016年   15篇
  2015年   12篇
  2014年   29篇
  2013年   58篇
  2012年   24篇
  2011年   23篇
  2010年   26篇
  2009年   21篇
  2008年   28篇
  2007年   28篇
  2006年   19篇
  2005年   13篇
  2004年   17篇
  2003年   17篇
  2002年   17篇
  2001年   4篇
  2000年   9篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   9篇
  1991年   4篇
  1989年   4篇
  1988年   2篇
  1986年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
  1959年   1篇
  1957年   1篇
  1954年   1篇
排序方式: 共有544条查询结果,搜索用时 453 毫秒
1.

Landslide poses severe threats to the natural landscape of the Lesser Himalayas and the lives and economy of the communities residing in that mountainous topography. This study aims to investigate whether the landscape change has any impact on landslide occurrences in the Kalsi-Chakrata road corridor by detailed investigation through correlation of the landslide susceptibility zones and the landscape change, and finally to demarcate the hotspot villages where influence of landscape on landslide occurrence may be more in future. The rational of this work is to delineate the areas with higher landslide susceptibility using the ensemble model of GIS-based multi-criteria decision making through fuzzy landslide numerical risk factor model along the Kalsi-Chakrata road corridor of Uttarakhand where no previous detailed investigation was carried out applying any contemporary statistical techniques. The approach includes the correlation of the landslide conditioning factors in the study area with the changes in land use and land cover (LULC) over the past decade to understand whether frequent landslides have any link with the physical and hydro-meteorological or, infrastructure, and socioeconomic activities. It was performed through LULC change detection and landslide susceptibility mapping (LSM), and spatial overlay analysis to establish statistical correlation between the said parameters. The LULC change detection was performed using the object-oriented classification of satellite images acquired in 2010 and 2019. The inventory of the past landslides was formed by visual interpretation of high-resolution satellite images supported by an intensive field survey of each landslide area. To assess the landslide susceptibility zones for 2010 and 2019 scenarios, the geo-environmental or conditioning factors such as slope, rainfall, lithology, normalized differential vegetation index (NDVI), proximity to road and land use and land cover (LULC) were considered, and the fuzzy LNRF technique was applied. The results indicated that the LULC in the study area was primarily transformed from forest cover and sparse vegetation to open areas and arable land, which is increased by 6.7% in a decade. The increase in built-up areas and agricultural land by 2.3% indicates increasing human interference that is continuously transforming the natural landscape. The landslide susceptibility map of 2019 shows that about 25% of the total area falls under high and very high susceptibility classes. The result shows that 80% of the high landslide susceptible class is contained by LULC classes of open areas, scrubland, and sparse vegetation, which point out the profound impact of landscape change that aggravate landslide occurrence in that area. The result acclaims that specific LULC classes, such as open areas, barren-rocky lands, are more prone to landslides in this Lesser Himalayan road corridor, and the LULC-LSM correlation can be instrumental for landslide probability assessment concerning the changing landscape. The fuzzy LNRF model applied has 89.6% prediction accuracy at 95% confidence level which is highly satisfactory. The present study of the connection of LULC change with the landslide probability and identification of the most fragile landscape at the village level has been instrumental in delineation of landslide susceptible areas, and such studies may help the decision-makers adopt appropriate mitigation measures in those villages where the landscape changes have mainly resulted in increased landslide occurrences and formulate strategic plans to promote ecologically sustainable development of the mountainous communities in India's Lesser Himalayas.

  相似文献   
2.
Environmental Science and Pollution Research - Seasonal distribution of phytoplankton community and size structure was assessed in three different tropical ecosystems of the western Bay of Bengal...  相似文献   
3.
The Singrauli region in the southeastern part of Uttar Pradesh, India is one of the most polluted industrial sites of Asia. It encompasses 11 open cast coalmines and six thermal power stations that generate about 7,500 MW (about 10% of India’s installed generation capacity) electricity. Thermal power plants represent the main source of pollution in this region, emitting six million tonnes of fly-ash per annum. Fly-ash is deposited on soils over a large area surrounding thermal power plants. Fly-ashes have high surface concentrations of several toxic elements (heavy metals) and high atmospheric mobility. Fly ash is produced through high-temperature combustion of fossil fuel rich in ferromagnetic minerals. These contaminants can be identified using rock-magnetic methods. Magnetic susceptibility is directly linked to the concentration of ferromagnetic minerals, primarily high values of magnetite. In this study, magnetic susceptibility of top soil samples collected from surrounding areas of a bituminous-coal-fired power plant were measured to identify areas of high emission levels and to chart the spatial distribution of airborne solid particles. Sites close to the power plant have shown higher values of susceptibility that decreases with increasing distance from the source. A significant correlation between magnetic susceptibility and heavy metal content in soils is found. A comparison of the spatial distribution of magnetic susceptibility with heavy-metal concentrations in soil samples suggests that magnetic measurements can be used as a rapid and inexpensive method for proxy mapping of air borne pollution due to industrial activity.  相似文献   
4.
Few studies have been carried out to connect nutrient recovery as struvite from wastewater and sustainable utilization of the recovered struvite for copper and zinc immobilization in contaminated soil. This study revealed the effect of struvite on Cu and Zn immobilization in contaminated bio-retention soil in the presence of commonly exuded plant organic acids. The research hypothesis was that the presence of both struvite and organic acids may influence the immobilization of Cu and Zn in soil. The outcome of this research confirmed that more than 99% of Cu and Zn was immobilized in bio-retention filter media by struvite application. Water-soluble Cu and Zn concentrations of struvite treated soil were less than 1.83 and 0.86 mg/kg respectively, and these concentrations were significantly lower compared to the total Cu and Zn content of 747.05 mg/kg in the contaminated soil. Application of struvite to Cu- and Zn-contaminated soil resulted in formation of compounds similar to zinc phosphate tetrahydrate (Zn3(PO4)2?4H2O) and amorphous Cu and Zn phases. Struvite was effective in heavy metal remediation in acidic soil regardless of the presence of Ca impurities in struvite and the presence of plant organic acids in soil. Overall, this study revealed that struvite recovered from wastewater treatment plants has potential for use as an amendment for heavy metal remediation in contaminated bio-retention soil.  相似文献   
5.
Modeling rhizofiltration: heavy-metal uptake by plant roots   总被引:1,自引:0,他引:1  
The discovery of phytoaccumulation potential of plant species has led to its application for remediation of heavy-metal-contaminated soil and wastewater, which is termed as phytoextraction/rhizofiltration. For prediction, analysis, planning and cost-effective design of such systems, mathematical models not only are used as a screening tool but also provide optimal parameters like harvesting time, irrigation schedule, etc. Several laboratory and field scale studies have been carried out in the past, and mathematical expressions have been developed by various researchers for different phenomena like metal adsorption in soil, plant root growth with time, moisture and metal uptake by plant root, moisture movement in unsaturated zone, soil moisture relationship, etc. The complete design of any such phytoremediation program would require the knowledge of behavior of heavy-metal movement in soil, water and plant root system. In this paper, a model for simulating heavy-metal dynamics in soil, water and plant root system is developed and discussed. The governing non-linear partial differential equation is solved numerically by implicit finite difference method using Picard's iterative technique, and the formulation has been illustrated using a characteristic example. The source code is written in MATLAB.  相似文献   
6.
7.
Focus on eco-friendly processing techniques makes vegetable tanning a viable option in leather processing and establishes the subsequent need for the more efficient methods of extraction in tannin manufacture. Application of ultrasound has been tried in the extraction of tannins from myrobalan nuts in order to improve the extraction efficiency, to perform the extraction under milder process conditions and to reduce the process time. The influence of process parameters such as ultrasonic output power, time and temperature has been studied. Scale-up trials and the use of ultrasound in pulse mode have also been attempted. The results show that a three- to fivefold improvement is possible with ultrasonic output from 20 to 100 W. Extraction efficiency has been calculated from the maximum extractable materials from myrobalan nuts. Extraction efficiency is found to be 90% for ultrasound, 100 W without external heating as compared to 77% for control process at 70 °C for 4 h. Therefore, ultrasound could be employed even dispensing with provision for temperature controls. The use of ultrasound in pulse mode offered 70% extraction efficiency of continuous mode. Scale-up trials indicate that there exists an optimum ultrasonic output power depending on the amount of nuts used, to achieve better extraction efficiency. The effectiveness of ultrasonically extracted tannin solution has also been tested in the tanning process for its applicability. The degree of tanning efficacy has been assessed by shrinkage temperature measurement. The results indicate that ultrasonically extracted tannin solution is suitable for tanning process. Therefore, application of ultrasound in tannin extract manufacture is a viable option with added advantages.  相似文献   
8.
9.
The present study was conducted to isolate and explore bacterial strains with a potential to sequester lead (Pb) and tolerate other heavy metals from industrial effluents and sediments. Out of the six bacterial strains isolated from seleniferous sites of Punjab, three isolates (RS-1, RS-2, and RS-3) were screened out for further growth-associated lead sequestration and molecular characterization on the basis of their tolerance toward lead and other heavy metals. Biomass and cell-free supernatant were analyzed for lead contents using ICP-MS after growth-associated lead sequestration studies in tryptone soya broth (pH?=?7.2?±?0.2) under aerobic conditions at 37 °C temperature. Almost 82 % and 70 % divalent lead was sequestered in cell pellets of RS-1 and RS-3, respectively while only 45 % of lead was found in cell pellet of RS-2 in the first 24 h. However, significant biosequestration of lead was observed in RS-2 after 48 h of incubation with concomitant increase in biomass. Simultaneously, morphological, biochemical, and physiological characterization of selected strains was carried out. 16S rRNA gene sequence of these isolates revealed their phylogenetic relationship with class Bacillaceae, a low G + C firmicutes showing 98 % homology with Bacillus sp.  相似文献   
10.
Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L?1; Cu was 392 μg L?1 at the extreme downstream, Allahabad and Ni was 146 μg L?1 at midstream, Agra. Largest concentration of Cu was 617 μg kg?1, Ni 1,621 μg kg?1 at midstream while Pb was 1,214 μg kg?1 at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg?1 in Oreochromis niloticus and 1.55 μg kg?1 in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg?1 in O. niloticus and 124 μg kg?1 in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02?×?10?4 which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号