首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
环保管理   1篇
综合类   2篇
污染及防治   5篇
  2015年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
  1993年   1篇
  1987年   1篇
排序方式: 共有8条查询结果,搜索用时 203 毫秒
1
1.
2.
3.
Monthly average ambient concentrations of more than eighty particle-phase organic compounds, as well as total organic carbon (OC) and elemental carbon (EC), were measured from March 2004 through February 2005 in five cities in the Midwestern United States. A multi-variant source apportionment receptor model, positive matrix factorization (PMF), was applied to explore the average source contributions to the five sampling sites using molecular markers for primary and secondary organic aerosols (POA, SOA). Using the molecular makers in the model, POA and SOA were estimated for each month at each site. Three POA factors were derived, which were dominated by primary molecular markers such as EC, hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs), and which represented the following POA sources: urban primary sources, mobile sources, and other combustion sources. The three POA sources accounted for 57% of total average ambient OC. Three factors, characterized by the presence of reaction products of isoprene, α-pinene and β-caryophyllene, and displaying distinct seasonal trends, were consistent with the characteristics of SOA. The SOA factors made up 43% of the total average measured OC. The PMF-derived results are in good agreement with estimated SOA concentrations obtained from SOA to tracer yield estimates obtained from smog chamber experiments. A linear regression comparing the smog chamber yield estimates and the PMF SOA contributions had a regression slope of 1.01 ± 0.07 and an intercept of 0.19 ± 0.10 μg OC m?3 (adjusted R2 of 0.763, n = 58).  相似文献   
4.
Organic carbon (OC) was measured semicontinuously in laboratory experiments of steady-state secondary organic aerosol formed by hydrocarbon + nitrogen oxide irradiations. Examination of the mass of carbon measured on the filter for various sample volumes reveals a systematic offset that is not observed when performing an instrumental blank. These findings suggest that simple subtraction of instrumental blanks determined as the standard analysis without sample collection (i.e., by cycling the pump and valves yet filtering zero liters of air followed by routine chemical analysis) from measured concentrations may be inadequate. This may be especially true for samples collected through the filtration of small air volumes wherein the influence of the systematic offset is greatest. All of the experiments show that filtering a larger volume of air minimizes the influence of contributions from the systematic offset. Application of these results to measurements of ambient concentrations of carbonaceous aerosol suggests a need for collection of sufficient carbon mass to minimize the relative influence of the offset signal.  相似文献   
5.
A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SOA) and how well their formation is described by recently developed models for SOA formation. The quality of a surrogate was tested by comparing its reactivity with that from irradiations of authentic automobile exhaust. Experiments for secondary particle formation using the surrogate were conducted in a fixed volume reactor operated in a dynamic mode. The mass concentration of the aerosol was determined from measurements of organic carbon collected on quartz filters and was corrected for the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. A functional group analysis of the aerosol made by Fourier transform infrared (FTIR) spectroscopy indicated  相似文献   
6.
7.
Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. Laboratory chamber experiments provide insights into the precursors of SOA, but field data must be used to test the approaches. This study investigates primary and secondary sources of organic carbon (OC) and determines their mass contribution to particulate matter 2.5 microm or less in aerodynamic diameter (PM2.5) in Southeastern Aerosol Research and Characterization (SEARCH) network samples. Filter samples were taken during 20 24-hr periods between May and August 2005 at SEARCH sites in Atlanta, GA (JST); Birmingham, AL (BHM); Centerville, AL (CTR); and Pensacola, FL (PNS) and analyzed for organic tracers by gas chromatography-mass spectrometry. Contribution to primary OC was made using a chemical mass balance method and to secondary OC using a mass fraction method. Aerosol masses were reconstructed from the contributions of POA, SOA, elemental carbon, inorganic ions (sulfate [SO4(2-)], nitrate [NO3-], ammonium [NH4+]), metals, and metal oxides and compared with the measured PM2.5. From the analysis, OC contributions from seven primary sources and four secondary sources were determined. The major primary sources of carbon were from wood combustion, diesel and gasoline exhaust, and meat cooking; major secondary sources were from isoprene and monoterpenes with minor contributions from toluene and beta-caryophyllene SOA. Mass concentrations at the four sites were determined using source-specific organic mass (OM)-to-OC ratios and gave values in the range of 12-42 microg m(-3). Reconstructed masses at three of the sites (JST, CTR, PNS) ranged from 87 to 91% of the measured PM2.5 mass. The reconstructed mass at the BHM site exceeded the measured mass by approximately 25%. The difference between the reconstructed and measured PM2.5 mass for nonindustrial areas is consistent with not including aerosol liquid water or other sources of organic aerosol.  相似文献   
8.
The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC–MS methods. In addition to the known isoprene photooxidation products 2-methylglyceric acid, 2-methylthreitol, and 2-methylerythritol, three other peaks of note were detected: one of these was consistent with a silylated-derivative of sulfuric acid, while the remaining two were other oxidized organic compounds detected only when acidic aerosol was present. These two oxidation products were also detected in field samples, and their presence was found to be dependent on both the apparent degree of aerosol acidity as well as the availability of isoprene aerosol. The average concentrations of the sum of these two compounds in the ambient PM2.5 samples ranged from below the GC–MS detection limit during periods when the isoprene emission rate or apparent acidity were low to approximately 200 ng m?3 (calibrations being based on a surrogate compound) during periods of high isoprene emissions. These compounds presently unidentified have the potential to serve as organic tracers of isoprene SOA formed exclusively in the presence of acidic aerosol and may also be useful in assessments in determining the importance and impact of aerosol acidity on ambient SOA formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号