首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环保管理   2篇
污染及防治   5篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Abstract

The U.S. Environmental Protection Agency has established a federal reference method (FRM) for ozone (O3) and allowed for designation of federal equivalent methods (FEMs). However, the ethylene‐chemiluminescence FRM for O3 has been replaced by the UV photometric FEM by most state and local monitoring agencies because of its relative ease of operation. Accumulating evidence indicates that the FEM is prone to bias under the hot, humid, and stagnant conditions conducive to high O3 formation. This bias may lead to overreporting hourly O3 concentrations by as much as 20–40 ppb. Measurement bias is caused by contamination of the O3 scrubber, a problem that is not detected by dry air calibration. An adequate wet test has not been codified, although a procedure has been proposed for agency consideration. This paper includes documentation of laboratory tests quantifying specific interferant responses, collocated ambient FRM/FEM monitoring results, and smog chamber comparisons of the FRM and FEMs with alternative scrubber designs. As the numbers of reports on monitor interferences have grown, interested parties have called for agency recognition and correction of these biases.  相似文献   
2.
Subsequent to the 1997 promulgation of the Federal Reference Method (FRM) for monitoring fine particulate matter (PM2.5) in ambient air, U.S. Environmental Protection Agency (EPA) received reports that the DOW 704 diffusion oil used in the method's Well Impactor Ninety-Six (WINS) fractionator would occasionally crystallize during field use, particularly under wintertime conditions. Although the frequency of occurrence on a nationwide basis was low, uncertainties existed as to whether crystallization of the DOW 704 oil may adversely affect a sampling event's data quality. In response to these concerns, EPA and the State of Connecticut Department of Environmental Protection jointly conducted a series of specialized tests to determine whether crystallized oil adversely affected the performance of the WINS fractionator. In the laboratory, an experimental setup used dry ice to artificially induce crystallization of the diffusion oil under controlled conditions. Using primary polystyrene latex calibration aerosols, standard size-selective performance tests of the WINS fractionator showed that neither the position nor the shape of the WINS particle size fractionation curve was substantially influenced by the crystallization of the DOW 704 oil. No large particle bounce from the crystallized impaction surface was observed. During wintertime field tests, crystallization of the DOW 704 oil did not adversely affect measured PM2.5 concentrations. Regression of measurements with crystallized DOW 704 versus liquid dioctyl sebacate (DOS) oil produced slope, intercept, and R2 values of 0.98, 0.1, and 0.997 microg/m3, respectively. Additional field tests validated the use of DOS as an effective impaction substrate. As a result of these laboratory and field tests, DOS oil has been approved by EPA as a substitute for DOW 704 oil. Since the field deployment of DOS oil in 2001, users of this alternative oil have not reported any operational problems associated with its use in the PM2.5 FRM. Limited field evaluation of the BGI very sharp cut cyclone indicates that it provides a viable alternative to the WINS fractionator.  相似文献   
3.
Short and sparse vegetation near shallow gas wells has generally been attributed to residual effects from well construction, but other mechanisms might also explain these trends. We evaluated effects of distance to shallow gas wells on vegetation and bare ground in mixed-grass prairies in southern Alberta, Canada, from 2010 to 2011. We then tested three hypotheses to explain why we found shorter vegetation and more bare ground near wells, using cattle fecal pat transects from 2012, and our vegetation quadrats. We evaluated whether empirical evidence suggested that observed patterns were driven by (1) higher abundance of crested wheatgrass (Agropyron cristatum) near wells, (2) residual effects of well construction, or (3) attraction of livestock to wells. Crested wheatgrass occurrence was higher near wells, but this did not explain effects of wells on vegetation structure. Correlations between distance to wells and litter depth were the highest near newer wells, providing support for the construction hypothesis. However, effects of distance to wells on other vegetation metrics did not decline as time since well construction increased, suggesting that other mechanisms explained observed edge effects. Cattle abundance was substantially higher near wells, and this effect corresponded with changes in habitat structure. Our results suggest that both residual effects of well construction and cattle behavior may explain effects of shallow gas wells on habitat structure in mixed-grass prairies, and thus, to be effective, mitigation strategies must address both mechanisms.  相似文献   
4.
5.
The effects of the nitrofuran furaltadone on Ulva lactuca   总被引:1,自引:0,他引:1  
The use of pharmaceuticals in the food production industry as prophylatic and therapeutic agents is necessary to promote animal health, but may entail significant consequences to natural ecosystems, especially in the cases of overdosing and use of banned pharmaceuticals. The vast effects that antibiotics released into the environment have on non-target organisms are already under the scope of researchers but little attention has been given to primary producers such as macroalgae. The present study assessed furaltadone’s, an antibacterial agent illegally used for veterinary purposes, uptake capacity by Ulva lactuca and its effect in the growth of this cosmopolitan macroalgae. Differences in macroalgal growth were shown when submitted to prophylactic and therapeutic concentrations of furaltadone in the water (16 and 32 μg mL−1, respectively). The therapeutic concentration caused higher growth impairment than the prophylactic treatment did, with 87.5% and 58% reductions respectively. Furthermore, together with data collected from the accumulation assays, with values of internal concentrations as high as 18.84 μg g−1 WW, suggest that the macroalgae U. lactuca should be included in field surveys as a biomonitor for the detection of nitrofurans.  相似文献   
6.
Long-standing measurement techniques for determining ground-level ozone (O3) and nitrogen dioxide (NO2) are known to be biased by interfering compounds that result in overestimates of high O3 and NO2 ambient concentrations under conducive conditions. An increasing near-ground O3 gradient (NGOG) with increasing height above ground level is also known to exist. Both the interference bias and NGOG were investigated by comparing data from a conventional Federal Equivalent Method (FEM) O3 photometer and an identical monitor upgraded with an “interference-free” nitric oxide O3 scrubber that alternatively sampled at 2 m and 6.2 m inlet heights above ground level (AGL). Intercomparison was also made between a conventional nitrogen oxide (NOx) chemiluminescence Federal Reference Method (FRM) monitor and a new “direct-measure” NO2 NOx 405 nm photometer at a near-road air quality measurement site. Results indicate that the O3 monitor with the upgraded scrubber recorded lower regulatory-oriented concentrations than the deployed conventional metal oxide–scrubbed monitor and that O3 concentrations 6.2 m AGL were higher than concentrations 2.0 m AGL, the nominal nose height of outdoor populations. Also, a new direct-measure NO2 photometer recorded generally lower NO2 regulatory-oriented concentrations than the conventional FRM chemiluminescence monitor, reporting lower daily maximum hourly average concentrations than the conventional monitor about 3 of every 5 days.

Implications: Employing bias-prone instruments for measurement of ambient ozone or nitrogen dioxide from inlets at inappropriate heights above ground level may result in collection of positively biased data. This paper discusses tests of new regulatory instruments, recent developments in bias-free ozone and nitrogen dioxide measurement technology, and the presence/extent of a near-ground O3 gradient (NGOG). Collection of unbiased monitor inlet height–appropriate data is crucial for determining accurate design values and meeting National Ambient Air Quality Standards.  相似文献   

7.
The U.S. Environmental Protection Agency has established a federal reference method (FRM) for ozone (O3) and allowed for designation of federal equivalent methods (FEMs). However, the ethylene-chemiluminescence FRM for O3 has been replaced by the UV photometric FEM by most state and local monitoring agencies because of its relative ease of operation. Accumulating evidence indicates that the FEM is prone to bias under the hot, humid, and stagnant conditions conducive to high O3 formation. This bias may lead to overreporting hourly O3 concentrations by as much as 20-40 ppb. Measurement bias is caused by contamination of the O3 scrubber, a problem that is not detected by dry air calibration. An adequate wet test has not been codified, although a procedure has been proposed for agency consideration. This paper includes documentation of laboratory tests quantifying specific interferant responses, collocated ambient FRM/FEM monitoring results, and smog chamber comparisons of the FRM and FEMs with alternative scrubber designs. As the numbers of reports on monitor interferences have grown, interested parties have called for agency recognition and correction of these biases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号