首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
废物处理   1篇
环保管理   2篇
综合类   1篇
基础理论   5篇
污染及防治   3篇
评价与监测   3篇
  2021年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
The effects of in situ chemical oxidation (ISCO) on biological processes, as reported in the literature, were researched to determine if coupling ISCO with in situ bioremediation could be achieved in field and laboratory experiments. Literature was compiled concerning the effect of ISCO on microbial communities following addition of a chemical oxidant at a range of concentrations designed to treat a variety of subsurface contaminants. The results indicate that although microbial communities may potentially be adversely affected by chemical oxidation in the short term, a rebound of microbial biomass and/or bioremediation activity can be expected. Successfully coupling ISCO with bioremediation in field applications may be a cost‐effective method of achieving risk‐based site remediation goals. © 2006 Wiley Periodicals, Inc.  相似文献   
2.
This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.  相似文献   
3.
4.
Although the fate of organotins has been widely studied in the marine environment, fewer studies have considered their impact in terrestrial systems. The degradation and toxicity of triphenyltin in autoclaved, autoclaved-reinoculated and non-sterilised soil was studied in a 231 day incubation experiment following a single application. Degradation and toxicity of phenyltin compounds in soil was monitored using both chemical and microbial (lux-based bacterial biosensors) methods. Degradation was significantly slower in the sterile soil when compared to non-sterilised soils. In the non-sterilised treatment, the half-life of triphenyltin was 27 and 33 days at amendments of 10 and 20 mg Sn kg(-1), respectively. As initial triphenyltin degradation occurred, there was a commensurate increase in toxicity, reflecting the fact that metabolites produced may be both more bioavailable and toxic to the target receptor. Over time, the toxicity reduced as degradation proceeded. The toxicity impact on non-target receptors for these compounds may be significant.  相似文献   
5.
In this study two sites were selected in order to investigate groundwater contamination and spatial relationships among groundwater quality, topography, geology, landuse and pollution sources. One site is the Asan area, an agricultural district where pollution sources are scattered and which is mainly underlain by granite of Cretaceous age. The other site is the Gurogu area of Seoul city, an industrial district where an industrial complex and residential areas are located and which is mainly underlain by gneiss of Precambrian age. Groundwater samples collected from these districts were analysed for chemical constituents. An attribute value files of chemical constituents of groundwater and the spatial data layers were constructed and pollution properties were investigated to establish out spatial relationships between the groundwater constituents and pollution sources using geographic information systems (GIS).Relatively high contents of Si and HCO3 in the groundwater from the Asan area reflect the effect of water–rock interaction whereas high contents of Cl, NO3 and Ca2+ in the groundwater from the Gurogu area are due to the pollution of various sources. The significant seasonal variation of SiO2, HCO2 and Ca2+ contents, and that of Ca2+ content were observed in the Asan and the Gurogu areas, respectively. Seasonal variation of pollutants such as Cl, NO3 and SO4 2– was not observed in either area. Pollution over the critical level of the Korean drinking water standard has been investigated from 15 sampling sites out of 40 in the Asan area, and 33 sampling sites out of 51 in the Gurogu area. Pollution by NO3 , Cl, Fe2+, Mn2+, SO4 2– and Zn2+ in the groundwater from the industrial district (Gurogu area) and that of NO3 , SO4 2– and Zn2+ in the groundwater from the agricultural district (Asan area) were observed. The principal pollutant in both areas is NO3 . Deep groundwater from the Asan area is not yet contaminated with NO3 except for one site, but most of the shallow groundwater site occurring near the potential point sources is seriously contaminated. From the result of buffering analysis, it seems clear that factories and stock farms are the principal pollution sources in the Asan area. The groundwater from the Gurogu area has already been seriously polluted considering the fact of NO3 contamination of deep groundwater. Chlorine pollution of shallow groundwater in the Gurogu area was also observed. Spatial relationship between pollution level and its source was clarified in this study by using GIS, which will be applicable to the effective management of groundwater quality.  相似文献   
6.
为研究沈阳市大气中PM2.5及其水溶性离子的污染特征、季节差异和来源情况,使用URG-9000D在线监测系统对沈阳市2019年大气颗粒物进行连续的采样分析,并利用正交矩阵因子分析法(PMF)进行污染物的来源解析.结果 表明,2019年沈阳市秋冬季节PM2.5质量浓度变化受相对湿度影响较大,冬季PM2.5平均质量浓度达到85.76 μg·m-3,细粒子污染较为严重.沈阳市大气PM2.5中SNA(SO42-、NO3和NH4+)所占比重表现为春季最高秋季最低;夏季SO42-和NH4+浓度较高,而NO3-浓度较低.SO42-在夏季呈单峰型日变化,与NO3-变化趋势相反.春夏秋三季NH4+与SO42-、NO3-主要结合为(NH4)2SO4和NH4NO3,冬季NH4+主要以(NH4)2SO4和NH4HSO4的形式存在.沈阳市存在较强的SO2和NOx二次转化现象,且各季节中SO2的转化率均高于NO2.PMF源解析结果表明,二次源对沈阳市大气污染贡献最大,夏秋季生物质燃烧和冬季燃煤源贡献同样不可忽视.  相似文献   
7.
Waste and process gases from thermal power and metallurgical plants or such products from alkali-chloride industries contain metallic, inorganic and organic mercury. Widespread processes applied to remove the greatest amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 μg/m3 [STP] by national and European legislators, considerable efforts have been made to enhance the efficiency of the main separation units of flue gas cleaning plants by applying the appropriate technological measures. This article is focused on the removal of mercury from waste gases. The state of engineering is described, especially with regard to enhancing the efficiency of separation in the raw gas, in wet, dry and quasi-dry processes as well as in tail-end process units. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Amalgamation has been investigated as a possible separation mechanism both experimentally and in theory. Using the ceramic reactor, removal rates for gaseous mercury and its compounds can be achieved which are even lower than 50 μg/m3 [STP]. The technology, the separation mechanisms and the ecological advantages through the use of ceramic reactors are presented in the article as well.  相似文献   
8.
Zusammenfassung  Bei einer genauen Kenntnis der vorliegenden Quecksilberverbindungen und ihrem Verhalten im Rauchgaspfad thermischer Anlagen k?nnen durch entsprechende technische Ma?nahmen die Abscheideeffizienzen in trockenen, quasitrockenen und nassen Rauchgasreinigungsanlagen erheblich gesteigert werden, so da? der derzeit gesetzlich vorgeschriebene Emissionsgrenzwert von 50 μg/m3 [i.N.tr.] eingehalten und unterschritten wird. Die in den letzten Jahren unternommenen Aktivit?ten und Fortschritte bei der Reduzierung des Quecksilberaussto?es von thermischen Anlagen werden zusammenfassend dargestellt. Am Beispiel von tr?gerimmobilisierten metall- und/oder metallsalzpartikelbelegten Tr?germaterialien (G/S-Reaktoren) wird die selektive Entfernung des Quecksilbers bzw. dessen Verbindungen experimentell und theoretisch im Rauchgaspfad verdeutlicht. Aus der selektiven Abtrennung von Quecksilber und seinen Verbindungen in der Gasphase resultieren auch entsprechende ?kologische und ?konomische Vorteile, die den allgemein erkennbaren Trend der artspezifischen Abtrennung von Schadstoffen mit einer m?glichen Rückführung des Wertstoffes Quecksilber in den Wirtschaftskreislauf unterstützen.   相似文献   
9.
In studies that have explored the potential environmental impacts of manufactured nanomaterials, the atmosphere has largely been viewed as an inert setting that acts merely as a route for inhalation exposure. Manufactured nanomaterials will enter the atmosphere during production, use, and disposal, and rather than simply being transported, airborne nanoparticles are in fact subject to physical and chemical transformations that could modify their fate, transport, bioavailability, and toxicity once they deposit to aqueous and terrestrial ecosystems. The objective of this paper is to review the factors affecting carbonaceous nanomaterials' behavior in the environment and to show that atmospheric transformations, often overlooked, have the potential to alter nanoparticles' physical and chemical properties and thus influence their environmental fate and impact. Atmospheric processing of naturally occurring and incidental nanoparticles takes place through coagulation, condensation, and oxidation; these phenomena are expected to affect manufactured nanoparticles as well. It is likely that carbonaceous nanomaterials in the atmosphere will be oxidized, effectively functionalizing them. By influencing size, shape, and surface chemistry, atmospheric transformations have the potential to affect a variety of nanoparticle-environment interactions, including solubility, interaction with natural surfactants, deposition to porous media, and ecotoxicity. Potential directions for future research are suggested to address the current lack of information surrounding atmospheric transformations of engineered nanomaterials.  相似文献   
10.
Waste and process gases from thermal power and metallurgical plants or such products from alkali-chloride industries contain metallic, inorganic and organic mercury. Widespread processes applied to remove the greatest amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 µg/m3 [STP] by national and European legislators, considerable efforts have been made to enhance the efficiency of the main separation units of flue gas cleaning plants by applying the appropriate technological measures. This article is focused on the removal of mercury from waste gases. The state of engineering is described, especially with regard to enhancing the efficiency of separation in the raw gas, in wet, dry and quasi-dry processes as well as in tail-end process units. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Amalgamation has been investigated as a possible separation mechanism both experimentally and in theory. Using the ceramic reactor, removal rates for gaseous mercury and its compounds can be achieved which are even lower than 50 µg/m3 [STP]. The technology, the separation mechanisms and the ecological advantages through the use of ceramic reactors are presented in the article as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号