首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   2篇
  2013年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Studies on the effect of genetically modified Bacillus thuringiensis (Bt) crops on true soil dwelling non-target arthropods are scarce. The objective of this study was to assess the influence of a 4-week exposure to two Bt maize varieties (Cry1Ab) Cascade and MEB307 on the collembolan Protaphorura armata. For comparison three non-Bt maize varieties, Rivaldo (isogenic to Cascade), Monumental (isogenic to MEB307) and DK242, and two control diets based on baker's yeast (uncontaminated and contaminated with Bt toxin Cry1Ab) were also tested. Due to a lower C:N ratio, individuals reared on yeast performed significantly better in all of the measured endpoints than those reared on maize. P. armata performed equally well when reared on two Bt and three non-Bt maize varieties. Although there were no negative effects of Bt maize in this experiment, we recommend future studies on Bt crops to focus on species interactions in long-term, multi-species experiments.  相似文献   
2.
Abstract

Sensory and pulmonary irritation are physiological responses to chemical exposure which result in characteristic, measurable changes in respiratory activity in mice. A standard method has been applied to the estimation of sensory irritation associated with a specific chemical exposure. This method has been correlated with human responses to these chemicals. Symptoms associated with chemical irritants are consistent with complaints due to problems with indoor air quality, which may include eye and upper respiratory tract irritation, headaches, and nausea. A stepwise strategy for assessing the contribution of indoor products to sensory and pulmonary irritation is discussed in the current paper. The strategy includes product emissions testing using dynamic environmental chambers, the selection of suspected irritants for respiratory irritation testing, respiratory irritation testing of individual compounds and representative mixtures using synthesized atmospheres, and the evaluation of test data to determine those compounds which may contribute to sensory and pulmonary irritation in humans. The current strategy is being applied to evaluate carpet system materials and their constituent chemicals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号