首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
污染及防治   1篇
  2001年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
In mixed industrial effluent the presence of metal ions can retard the destruction of organic contaminants and the efficiency of recovery of the metal is reduced by the presence of the organic species. Results are presented for copper-2,4-dichlorophenoxyacetic acid (2,4-D) system in which both effects occur. An electrochemical cell alone can be used to recover copper in the pH range 1.5-4.5 but it is not capable of achieving complete disappearance of 2,4-D by anodic oxidation. A photolytic cell alone can achieve the destruction of 2,4-D at pH 3.5 but leaves copper in solution. A combined photolytic-electrochemical system using an activated carbon concentrator cathode achieves the rapid simultaneous destruction of 2,4-D and recovery of copper. Results are presented for the recovery of more than 90% copper from, and >99.9%, destruction of the organochlorine compound 2,4-D in, a solution containing 100 mg dm(-3) copper and 50 mg dm(-3) 2.4-D. The photolytic degradation of 2,4-D depends on the intensity of the UV-probe. Only 19% degradation is achieved after 8 h with the 150 W UV-probe but the corresponding value with the 400 W UV-probe is 100%. In the case of 150 W UV-probe the degradation of 2,4-D proceeds through the formation of 2,4-dichlorophenol and phenol. The concentration of these intermediates are very low in the case of 400 W UV-probe because the speed of the degradation of 2,4-D is very fast. The addition of TiO2 (1 g dm(-3)), as a semiconductor material, and H202 (1.5 g dm(-3)) as an oxidant, increases the photolytic degradation of 2,4-D.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号