首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
污染及防治   4篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Environmental Science and Pollution Research - Cobalt (Co) is widely used in many industrial fields such as batteries and paints. Cobalt, a dangerous heavy metal, can be found in high...  相似文献   
2.

Excessive doses of toxic metals such as cobalt may cause detrimental hazards to exposed organisms. Six groups of onion bulbs were formed to investigate the therapeutic effects of grape seed extract (GSE) against cobalt(II) nitrate (Co(NO3)2) exposure in Allium cepa L. root tips. Control group was irrigated with tap water, while the latter groups were exposed to 150 mg/L GSE, 300 mg/L GSE, 5.5 ppm Co(NO3)2, 5.5 ppm Co(NO3)2 + 150 mg/L GSE and 5.5 ppm Co(NO3)2 + 300 mg/L GSE, respectively. Co(NO3)2 treatment seriously inhibited the root growth, germination and weight gain of the bulbs. Mitotic index was significantly decreased, whereas the chromosomal aberrations and micronuclei incidence exhibited a remarkable increase. In addition, Co(NO3)2 induced a variety of anatomical disorders in onion roots. Lipid peroxidation levels of the cellular membranes were assessed measuring the malondialdehyde content (MDA). MDA amount in Co(NO3)2-treated group reached the highest level among all groups. Co(NO3)2 treatment enhanced the activity of superoxide dismutase and catalase. The addition of GSE to Co(NO3)2 solution substantially suppressed the negative effects of Co(NO3)2 in a dose-dependent manner by strengthening the antioxidant defence system and reducing the cytotoxicity. Moreover, there was a significant recovery in growth parameters following the grape seed addition to Co(NO3)2. GSE had a remarkable reduction in genotoxicity when treated as a mixture with Co(NO3)2. Overall data obtained from this investigation proved that GSE, as a promising functional by-product, had a protective effect on Allium cepa L. against the toxic effects of Co(NO3)2.

  相似文献   
3.
Environmental Science and Pollution Research - The immense protection potential of plant-derived products against heavy metal toxicity has become a considerable field of research. The goal of the...  相似文献   
4.

Organisms are increasingly exposed to ultraviolet (UV) rays of sunlight, due to the thinning of the ozone layer and its widespread use in sterilization processes, especially against the SARS-CoV-2 virus. The present study was conducted with the purpose of evaluating the damages of UV-A and UV-C radiations in Allium cepa L. roots. The effects of two different types of UV on some physiological, biochemical, cytogenotoxic, and anatomical parameters were investigated in a multifaceted study. Three groups were formed from Allium bulbs, one of which was the control group. One of the other groups was exposed to 254 nm (UV-C) and the other to 365 nm (UV-A) UV. Growth retardation effect of UV was investigated with respect to germination percentage, total weight gain, and root elongation, while cytogenotoxicity arisen from UV exposure was analyzed using mitotic index (MI) and chromosomal aberration (CA) and micronucleus (MN) frequency. Oxidative stress due to UV application was investigated based on the accumulation of malondialdehyde (MDA) and the total activities of superoxide dismutase (SOD) and catalase (CAT) enzymes. Also, anatomical changes induced by UV-A and UV-C were analyzed in root meristematic cells. UV treatments caused significant reductions in growth-related parameters. Both UV treatments caused a significant increase in MDA levels and induction of SOD and CAT enzymes in root meristematic cells. A decrease in MI and an increase in the frequency of MN and CAs were observed in root tip cells, indicating the cytogenotoxic effect of UV application. Anatomical damages such as epidermis cell damage, cortex cell damage, necrotic zones, giant cell nucleus, and indistinct transmission tissue occurred in cells exposed to UV. All of the physiological, biochemical, cytogenetic, and anatomical damages observed in this study were more severe in cells treated with UV-C compared to UV-A. This study suggested that UV exposure triggered growth inhibition, cytogenotoxicity, oxidative stress, and meristematic cell damages in A. cepa roots depending on the wavelength.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号