首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   3篇
废物处理   12篇
环保管理   21篇
综合类   4篇
基础理论   18篇
环境理论   1篇
污染及防治   13篇
评价与监测   4篇
社会与环境   1篇
  2022年   1篇
  2019年   3篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   2篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   1篇
  1995年   1篇
  1991年   3篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1980年   2篇
  1978年   1篇
  1975年   2篇
排序方式: 共有74条查询结果,搜索用时 78 毫秒
1.
Environmental Science and Pollution Research - Vegetated buffer strips (VBSs) are widely encouraged as a cost-effective strategy to address phosphorus (P) pollution associated with agricultural...  相似文献   
2.
Pasture management practices can affect forage quality and production, animal health and production, and surface and groundwater quality. In a 5-yr study conducted at the North Appalachian Experimental Watershed near Coshocton, Ohio, we compared the effects of two contrasting grazing methods on surface and subsurface water quantity and quality. Four pastures, each including a small, instrumented watershed (0.51-1.09 ha) for surface runoff measurements and a developed spring for subsurface flow collection, received 112 kg N ha(-1) yr(-1) and were grazed at similar stocking rates (1.8-1.9 cows ha(-1)). Two pastures were continuously stocked; two were subdivided so that they were grazed with frequent rotational stocking (5-6 times weekly). In the preceding 5 yr, these pastures received 112 kg N ha(-1) yr(-1) after several years of 0 N fertilizer and were grazed with weekly rotational stocking. Surface runoff losses of N were minimal. During these two periods, some years had precipitation up to 50% greater than the long-term average, which increased subsurface flow and NO(3)-N transport. Average annual NO(3)-N transported in subsurface flow from the four watersheds during the two 5-yr periods ranged from 11.3 to 22.7 kg N ha(-1), which was similar to or less than the mineral-N received in precipitation. Flow and transport variations were greater among seasons than among watersheds. Flow-weighted seasonal NO(3)-N concentrations in subsurface flow did not exceed 7 mg L(-1). Variations in NO(3)-N leached from pastures were primarily due to variable precipitation rather than the effects of continuous, weekly rotational, or frequent rotational stocking practices. This suggests that there was no difference among these grazing practices in terms of NO(3)-N leaching.  相似文献   
3.
With landfill costs increasing and regulations on landfilling becoming more stringent, alternatives to conventional hazardous waste treatment strategies are becoming more desirable. Incineration Is presently a permanent, proven solution for the disposal of most organic contaminants, but also a costly one, especially in the case of solids which require some auxiliary fuel. The goal of this research is to develop an understanding of the phenomena associated with the evolution of contaminants from solids In the primary combustor of an Incineration system. A four-fold approach is being used. First, a bench-scale particle characterization reactor was developed to study the transport phenomena on a particle basis, where the controlling processes are mainly intraparticle. Second, a bed-characterization reactor was built to examine the controlling transport phenomena within a bed of particles, where the processes are primarily interparticle. The results of these studies can be applied to any primary combustor. A pilot-scale rotary kiln was developed to study the evolution of contaminants from solids within a realistic temperature and rotation environment. Finally, in situ measurements are being obtained from a full-scale rotary-kiln.

This paper describes results obtained in a study using a commercial sorbent contaminated with toluene. The data are from the particle-characterization reactor and the rotary-kiln simulator. The results show that the method of contamination and charge size do not have a large effect on desorption, while temperature and contaminant concentration are important parameters In the evolution of contaminants in a rotary kiln.  相似文献   
4.
This study investigated the influence of Indian mustard (Brassica juncea) root exudation on soil solution properties (pH, dissolved organic carbon (DOC), metal solubility) in the rhizosphere using a rhizobox. Measurement was conducted following the cultivation of Indian mustard in the rhizobox filled four di erent types of heavy metal contaminated soils (two alkaline soils and two acidic soils). The growth of Indian mustard resulted in a significant increase (by 0.6 pH units) in rhizosphere soil solution pH of acidic soils and only a slight increase (< 0.1 pH units) in alkaline soils. Furthermore, the DOC concentration increased by 17–156 mg/L in the rhizosphere regardless of soil type and the extent of contamination, demonstrating the exudation of DOC from root. Ion chromatographic determination showed a marked increase in the total dissolved organic acids (OAs) in rhizosphere. While root exudates were observed in all soils, the amount of DOC and OAs in soil solution varied considerably amongst di erent soils, resulting in significant changes to soil solution metals in the rhizosphere. For example, the soil solution Cd, Cu, Pb, and Zn concentrations increased in the rhizosphere of alkaline soils compared to bulk soil following plant cultivation. In contrast, the soluble concentrations of Cd, Pb, and Zn in acidic soils decreased in rhizosphere soil when compared to bulk soils. Besides the influence of pH and DOC on metal solubility, the increase of heavy metal concentration having high stability constant such as Cu and Pb resulted in a release of Cd and Zn from solid phase to liquid phase.  相似文献   
5.
The U.S. Renewable Fuel Standard calls for 136 billion liters of renewable fuels production by 2022. Switchgrass (Panicum virgatum L.) has emerged as a leading candidate to be developed as a bioenergy feedstock. To reach biofuel production goals in a sustainable manner, more information is needed to characterize potential production rates of switchgrass. We used switchgrass yield data and general additive models (GAMs) to model lowland and upland switchgrass yield as nonlinear functions of climate and environmental variables. We used the GAMs and a 39-year climate dataset to assess the spatio-temporal variability in switchgrass yield due to climate variables alone. Variables associated with fertilizer application, genetics, precipitation, and management practices were the most important for explaining variability in switchgrass yield. The relationship of switchgrass yield with climate variables was different for upland than lowland cultivars. The spatio-temporal analysis showed that considerable variability in switchgrass yields can occur due to climate variables alone. The highest switchgrass yields with the lowest variability occurred primarily in the Corn Belt region, suggesting that prime cropland regions are the best suited for a constant and high switchgrass biomass yield. Given that much lignocellulosic feedstock production will likely occur in regions with less suitable climates for agriculture, interannual variability in yields should be expected and incorporated into operational planning.  相似文献   
6.
7.
There currently exists a need for better characterization and simulation of the processes that occur during the incineration of hazardous wastes in the environment of a rotary kiln. Addressing this need, a comprehensive research program was formed with the goal of developing a rudimentary predictive capability for rotary kiln incineration of hazardous wastes. This comprehensive program is headed by Louisiana State University and includes interaction with the University of Utah and also various industrial participants. Such cooperation allows use of laboratory, pilot, and field scale equipment. While laboratory scale experiments provide the necessary decoupling of complex phenomena and a high degree of experimental control, and pilot scale studies provide more realism at the expense of experimental control, the problems of scale-up make generalization of results to field scale units very tenuous. The unique aspect of the LSU program is the coupling of the laboratory and pilot scale units with afield scale unit in order to overcome these generalizations. In this study, plastic packs containing a mixture of toluene and sorbent were fed to a field-scale rotary kiln incinerator at a rate of one pack every 10 minutes. Selected continuous gas samples and temperatures were obtained from the exit of the rotary kiln, from the afterburner, and from the stack. These measurements were obtained during various operating conditions. These data provide, for the first time, an ability to compare conditions in the kiln to simultaneous conditions in the afterburner and stack. This paper outlines several new experimental features of our field-scale tests conducted in October 1990. Oxygen responses from the kiln, the afterburner, and the stack are compared during various operating conditions.  相似文献   
8.
Respiration and physiological state in marine bacteria   总被引:3,自引:0,他引:3  
The relationship between oxygen consumption (R) and respiratory electron-transport-system (ETS) activity was investigated in batch cultures of 5 species of marine bacteria, Vibrio adaptatus, V. anguillarum, a partially identified Vibrio sp. SA774, Serratia marinorubra, and Pseudomonas perfectomarinus. Although cellular levels of R and ETS varied widely among the species tested, the R:ETS ratios for growing or senescent populations were relatively constant among the species; these ratios were 5.02 in growth and 0.426 in senescence, with coefficients of variation of 29 and 20%, respectively. The lower senescent-phase R:ETS ratio was due to a depression of the respiration rates following growth termination. The regression log (R per cell) = 0.832 log (ETS per cell) + 0.727 for the growing populations was similar to that determined for marine zooplankton. The slight dependency of the R:ETS ratio on organism dry weight found for zooplankton was supported by our data. Planktonic respiration rates estimated from measured ETS-depth profiles in the eastern tropical North Pacific Ocean using the senescent-phase R:ETS ratio were similar to published oxygen consumption rates in the deep sea.Contribution No. M79-61 from the University of Washington's Department of Oceanography, and No. 79032 from the Bigelow Laboratory for Ocean Sciences.  相似文献   
9.
Approximately 11% of the Southern Piedmont (1.8 million ha) is used for pasture and hay production, mostly under low-input management. Few studies have investigated in the region long-term nitrogen and carbon losses in surface runoff, which can be significant. We present 1999 to 2009 hydrologic and water quality data from a rotationally grazed, 7.8-ha, zero-order pasture (W1) near Watkinsville in the Georgia Piedmont. Annual rainfall was 176 to 463 mm below the long-term average (1240 mm) in 7 of the 11 yr. There were 20 runoff events during 86 mo of below-average rainfall (deficit period), compared with 54 events during 46 mo of nondeficit period. Mean event flow-weighted concentration (in mg L) was 0.96 for nitrate-nitrogen (NO-N), 0.97 for ammonium-nitrogen (NH-N), 3.70 for total nitrogen (TN), and 9.12 for total organic carbon (TOC) ( = 43-47; limited due to instrument problem). Nutrient loads (in kg ha per event) averaged 0.04 for NO-N, 0.03 for NH-N, 0.19 for TN, and 0.54 for TOC. Total loads for N and TOC were 6 to 11 times greater from nondeficit than from deficit periods. The observed N concentrations, while well below maximum drinking water standard limits, could pose risk for eutrophication, which can be stimulated at lower concentrations. However, the ability of headwater streams, such as the one downstream of W1, to reduce nutrient concentrations might partially alleviate this concern. The results of this study point to the need to use a long-term dataset that includes measurements made in drought and wet years when evaluating the efficacy of water quality standards.  相似文献   
10.
A measure of soil P status in agricultural soils is generally required for assisting with prediction of potential P loss from agricultural catchments and assessing risk for water quality. The objectives of this paper are twofold: (i) investigating the soil P status, distribution, and variability, both spatially and with soil depth, of two different first-order catchments; and (ii) determining variation in soil P concentration in relation to catchment topography (quantified as the "topographic index") and critical source areas (CSAs). The soil P measurements showed large spatial variability, not only between fields and land uses, but also within individual fields and in part was thought to be strongly influenced by areas where cattle tended to congregate and areas where manure was most commonly spread. Topographic index alone was not related to the distribution of soil P, and does not seem to provide an adequate indicator for CSAs in the study catchments. However, CSAs may be used in conjunction with soil P data for help in determining a more "effective" catchment soil P status. The difficulties in defining CSAs a priori, particularly for modeling and prediction purposes, however, suggest that other more "integrated" measures of catchment soil P status, such as baseflow P concentrations or streambed sediment P concentrations, might be more useful. Since observed soil P distribution is variable and is also difficult to relate to nationally available soil P data, any assessment of soil P status for determining risk of P loss is uncertain and problematic, given other catchment physicochemical characteristics and the sampling strategy employed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号