首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
废物处理   1篇
污染及防治   1篇
  2019年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Biodegradation of poly(ε-caprolactone) composite with graphite oxide (GO) by the action of Bacillus subtilis (BS) was studied in this work. Nanocomposite produced in a form of thin film was exposed to nutrient cultivation medium with BS as well as to abiotic nutrient medium (control run) at 30 °C. The matrix itself was exposed to the same conditions for comparison. Biodegradation was demonstrated by the weight loss and the decrease of molecular weight during 21 days of the experiment as well as by changes in the surface morphology and structure. Both degraded and control materials were characterized by confocal laser scanning microscopy, differential scanning calorimetry, thermogravimetry, and Fourier transform infrared spectroscopy with attenuated total reflectance. The bacterial growth expressed as the measure of the optical density/turbidity in McFarland units and pH of medium were measured in situ during the experiment. Lipolytic activity of BS was determined by spectrophotometric assay. Degradation process was accompanied by the increase of matrix crystallinity degree. GO served as nucleating agent and facilitated absorption of cultivation media into the composite which led to the increase of the crystallinity degree also for control nanocomposite specimens. It was not evaluated to be promoter of biodegradation. The surface cracks formation was initiated by BS action. Large surface cracks were formed on BS-degraded composite surfaces while surface erosion was more significant on BS-degraded matrix.  相似文献   
2.

Environmental pollutants, including antibiotics (ATBs), have become an increasingly common health hazard in the last several decades. Overdose and abuse of ATBs led to the emergence of antibiotic-resistant genes (ARGs), which represent a serious health threat. Moreover, water bodies and reservoirs are places where a wide range of bacterial species with ARGs originate, owing to the strong selective pressure from presence of ATB residues. In this regard, graphene oxide (GO) has been utilised in several fields including remediation of the environment. In this review, we present a brief overview of resistant genes of frequently used ATBs, their occurrence in the environment and their behaviour. Further, we discussed the factors influencing the binding of nucleic acids and the response of ARGs to GO, including the presence of salts in the water environment or water pH, because of intrinsic properties of GO of not only binding to nucleic acids but also catalysing their decomposition. This would be helpful in designing new types of water treatment facilities.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号