首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   2篇
污染及防治   5篇
  2022年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Low solubility of certain hydrophobic soil contaminants limits remediation process. Surface-active compounds can improve the solubility and removal of hydrophobic compounds from contaminated soils and, consequently, their biodegradation. Hence, this paper aims to study desorption efficiency of oil from soil of SPB1 lipopeptide biosurfactant. The effect of different physicochemical parameters on desorption potency was assessed. Taguchi experimental design method was applied in order to enhance the desorption capacity and establish the best washing parameters. Mobilization potency was compared to those of chemical surfactants under the newly defined conditions. Better desorption capacity was obtained using 0.1 % biosurfacatnt solution and the mobilization potency shows great tolerance to acidic and alkaline pH values and salinity. Results show an optimum value of oil removal from diesel-contaminated soil of about 87 %. The optimum washing conditions for surfactant solution volume, biosurfactant concentration, agitation speed, temperature, and time were found to be 12 ml/g of soil, 0.1 % biosurfactant, 200 rpm, 30 °C, and 24 h, respectively. The obtained results were compared to those of SDS and Tween 80 at the optimal conditions described above, and the study reveals an effectiveness of SPB1 biosurfactant comparable to the reported chemical emulsifiers. (1) The obtained findings suggest (a) the competence of Bacillus subtilis biosurfactant in promoting diesel desorption from soil towards chemical surfactants and (b) the applicability of this method in decontaminating crude oil-contaminated soil and, therefore, improving bioavailability of hydrophobic compounds. (2) The obtained findings also suggest the adequacy of Taguchi design in promoting process efficiency. Our findings suggest that preoptimized desorption process using microbial-derived emulsifier can contribute significantly to enhancement of hydrophobic pollutants' bioavailability. This study can be complemented with the investigation of potential role in improving the biodegradation of the diesel adsorbed to the soil.  相似文献   
2.
Journal of Polymers and the Environment - Media composition and culture conditions for levan production by Bacillus mojavensis (BM-levan) were optimized using Plackett–Burman and Box-Behnken...  相似文献   
3.
Sulfated polysaccharides were isolated from two Tunisian fish skins grey triggerfish (Balistes capriscus) (GTSP) and smooth hound (Mustelus mustelus) (SHSP). Their chemical and physical characteristics were investigated. The Analysis of surface morphology by scanning electron microscopy of both sulfated polysaccharides displayed the same shape with netted structure. The antioxidant activities of GTSP and SHSP were evaluated using various in vitro antioxidant assays: 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power, β-carotene bleaching inhibition assay (IC50 GTSP = 0.5 mg mL?1 and IC50 SHSP = 0.6 mg mL?1) and DNA nicking assay. Both sulfated polysaccharides exhibited good antioxidant activities. The sulfated polysaccharides showed strong angiotensin I-converting enzyme inhibitory activities (IC50 GTSP = 0.16 mg mL?1 and IC50 SHSP = 0.18 mg mL?1). These results revealed that GTSP and SHSP exhibited significant antihypertensive activities. Overall, the results indicated that grey triggerfish and smooth hound skins can be used to generate high value-added products, thus offering a valuable source of bioactive sulfated polysaccharides for application in wide range of biotechnological applications.  相似文献   
4.
5.
6.
7.
Groundwater is the main source of water in Mediterranean, water-scarce, semiarid regions of Tunisia, Africa. In this study of the Korba coastal aquifer, 17 water wells were studied to assess their suitability for irrigation and drinking purposes. Assessment parameters include pH, salinity, specific ion toxicity, sodium adsorption ratio, nutrients, trace metals pollutants, and fecal indicators and pathogens. Results indicate that salinity of groundwater varied between 0.36 dS/m and 17.4 dS/m; in addition, its degree of restriction is defined as "none", "slight to moderate", and "severe" for 18, 23, and 59% of the studied wells, respectively. To control salts brought in by irrigation waters, the question arises as to how much water should be used to reach crop and soil requirements. To answer this question, a new approach that calculates the optimum amount of irrigation water considering the electrical conductivity of well water (ECw), field crops, and the semiarid meteorological local conditions for evapotranspiration and rainfall is developed. This is applied to the authors' case study area; barley and lettuce were selected among the commonly grown crops because they are high- and low-salinity tolerant, respectively. Leaching requirements were found to be independent of the crop selected, and depend only on the season, that is, 250 to 260 mm/month in the driest season, with a minimum of 47 mm/month though all seasons. A high bacteriological contamination appears in almost all samples. However, if disinfected and corrected for pH, all the well waters can be used for animal farming (including livestock and poultry), although only 29% could be used for human consumption.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号