首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   1篇
污染及防治   2篇
  2012年   2篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 231 毫秒
1
1.
2.
Although petroleum contamination has been identified at many Antarctic research stations, and is recognized as posing a significant threat to the Antarctic environment, full-scale in situ remediation has not yet been used in Antarctica. This is partly because it has been assumed that temperatures are too low for effective biodegradation. To test this, the effects of temperature on the hydrocarbon mineralisation rate in Antarctic terrestrial sediments were quantified. 14C-labelled octadecane was added to nutrient amended microcosms that were incubated over a range of temperatures between -2 and 42 degrees C. We found a positive correlation between temperature and mineralisation rate, with the fastest rates occurring in samples incubated at the highest temperatures. At temperatures below or near the freezing point of water there was a virtual absence of mineralisation. High temperatures (37 and 42 degrees C) and the temperatures just above the freezing point of water (4 degrees C) showed an initial mineralisation lag period, then a sharp increase in the mineralisation rate before a protracted plateau phase. Mineralisation at temperatures between 10 and 28 degrees C had no initial lag phase. The high rate of mineralisation at 37 and 42 degrees C was surprising, as most continental Antarctic microorganisms described thus far have an optimal temperature for growth of between 20 and 30 degrees C and a maximal growth temperature <37 degrees C. The main implications for bioremediation in Antarctica from this study are that a high-temperature treatment would yield the most rapid biodegradation of the contaminant. However, in situ biodegradation using nutrients and other amendments is still possible at soil temperatures that occur naturally in summer at the Antarctic site we studies (Casey Station 66 degrees 17(') S, 110 degrees 32(') E), although treatment times could be excessively long.  相似文献   
3.
Many intervention activities in the terrestrial subsurface involve the need to recover/emplace distributions of scalar quantities (e.g. dissolved phase concentrations or heat) from/in volumes of saturated porous media. These scalars can be targeted by pump-and-treat methods or by amendment technologies. Application examples include in-situ leaching for metals, recovery of dissolved contaminant plumes, or utilizing heat energy in geothermal reservoirs. While conventional pumping methods work reasonably well, costs associated with maintaining pumping schedules are high and improvements in efficiency would be welcome. In this paper we discuss how transient switching of the pressure at different wells can intimately control subsurface flow, generating a range of "programmed" flows with various beneficial characteristics. Some programs produce chaotic flows which accelerate mixing, while others create encapsulating flows which can isolate fluid zones for lengthy periods. In a simplified model of an aquifer subject to balanced pumping, chaotic flow topologies have been predicted theoretically and verified experimentally using Hele-Shaw cells. Here, a survey of the key characteristics of chaotic advection is presented. Mathematical methods are used to show how these characteristics may translate into practical situations involving regional flows and heterogeneity. The results are robust to perturbations, and withstand significant aquifer heterogeneity. It is proposed that chaotic advection may form the basis of new efficient technologies for groundwater interventions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号