首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
综合类   3篇
基础理论   6篇
污染及防治   5篇
评价与监测   2篇
社会与环境   4篇
  2022年   2篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Wani PA  Khan MS  Zaidi A 《Chemosphere》2007,70(1):36-45
The nickel and zinc tolerant plant growth promoting Bradyrhizobium sp. (vigna) RM8 was isolated from nodules of greengram, grown in metal contaminated Indian soils. The plant growth promoting (PGP) potentials of strain RM8 was assessed both in the presence and absence of nickel and zinc under in vitro conditions. Strain RM8 tolerated a high level of nickel (300 microg ml(-1)) and zinc (1400 microg ml(-1)) on yeast extract mannitol agar medium. Bradyrhizobium sp. (vigna) strain RM8 produced 13.3 microg ml(-1) of indole acetic acid in Luria Bertani broth at 100 microg ml(-1) of tryptophan which increased to 13.6 microg ml(-1) at 50 microg Ni ml(-1) and 13.5 microg ml(-1) at 300 microg Zn ml(-1). Strain RM8 was positive for siderophore, HCN and ammonia both in the absence and presence of nickel and zinc. The PGP activity of this strain was further evaluated with increasing concentrations of nickel and zinc using greengram as a test crop. The bioinoculant enhanced the nodule numbers by 82%, leghaemoglobin by 120%, seed yield by 34%, grain protein by 13%, root N by 41% and shoot N by 37% at 290 mg Ni kg(-1) soil. At 4890 mg Zn kg(-1) soil, the bioinoculant increased the nodule numbers by 50%, leghaemoglobin by 100%, seed yield by 36%, grain protein by 13%, root N by 47% and shoot N by 42%. The bioinoculant strain RM8 reduced the uptake of nickel and zinc by plant organs compared to plants grown in the absence of bioinoculant. This study suggested that the bioinoculant due to its intrinsic abilities of growth promotion and attenuation of the toxic effects of nickel and zinc could be exploited for remediation of metal from nickel and zinc contaminated sites.  相似文献   
2.
3.
Pollution of the biosphere by the toxic metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The primary source of this pollution includes the industrial operations such as mining, smelting, metal forging, combustion of fossil fuels and sewage sludge application in agronomic practices. The metals released from these sources accumulate in soil and in turn, adversely affect the microbial population density and physico-chemical properties of soils, leading to the loss of soil fertility and yield of crops. The heavy metals in general cannot be biologically degraded to more or less toxic products and hence, persist in the environment. Conventional methods used for metal detoxification produce large quantities of toxic products and are cost-effective. The advent of bioremediation technology has provided an alternative to conventional methods for remediating the metal-poisoned soils. In metal-contaminated soils, the natural role of metal-tolerant plant growth promoting rhizobacteria in maintaining soil fertility is more important than in conventional agriculture, where greater use of agrochemicals minimize their significance. Besides their role in metal detoxification/removal, rhizobacteria also promote the growth of plants by other mechanisms such as production of growth promoting substances and siderophores. Phytoremediation is another emerging low-cost in situ technology employed to remove pollutants from the contaminated soils. The efficiency of phytoremediation can be enhanced by the judicious and careful application of appropriate heavy-metal tolerant, plant growth promoting rhizobacteria including symbiotic nitrogen-fixing organisms. This review presents the results of studies on the recent developments in the utilization of plant growth promoting rhizobacteria for direct application in soils contaminated with heavy metals under a wide range of agro-ecological conditions with a view to restore contaminated soils and consequently, promote crop productivity in metal-polluted soils across the globe and their significance in phytoremediation.  相似文献   
4.
Soil physical and chemical properties were quantified to assess soil organic carbon (SOC) density (t ha-1) and SOC CO2 mitigation (t ha-1) under six forest strata Cedrus deodara (closed) (S1), Cedrus deodara (open) (S2), Abies pindrow-Picea smithiana (closed) (S3), Abies pindrow-Picea smithiana (open) (S4), Pinus wallichiana (closed) (S5) and Pinus wallichiana (open) (S6) in the southern region of Kashmir Himalayas India. Lowest average bulk density (Db) of 0.95 was found same in S3 (σ?±?0.07) and S5 (σ?±?0.09) and highest Db (1.08) was observed in S2 (σ?±?0.05). A relatively higher coarse fraction was observed in all the six strata ranging from 19.23 (SD?±?4.66) in S3 to 29.37 (σ?±?6.12) in S6. Soil pH ranged from 6.09 (σ?±?0.64) in S4 to 6.97 (σ?±?0.53) in S2. The region under biotic interference has observed significant deforestation and degradation in the past two decades leading to lower SOC% values compared to other studies in the adjoining regions of Indian Himalayas and temperate coniferous forests in general. SOC% values were observed to range from 1.03 (σ?±?0.22) in S2 to 2.25 (σ?±?0.23) in S3. SOC density ranged between 25.11 (σ?±?5.41) t ha-1 in S2 and 51.93 (σ?±?5.24) t ha-1 in S3. SOC CO2 mitigation density was found highest 190.59 (σ?±?19.23) t ha-1 in S3 and lowest 92.16 (σ?±?19.86) t ha-1 in S2. A significant variation was observed in SOC density within strata. SOC density values in closed strata in general exceed to those in open strata. Primary results indicate that the average SOC stock for all the strata is low due to continuous biotic pressure in the last two decades making it a potential region for SOC buildup under plus options of REDD + (Reducing emissions from deforestation and forest degradation) which includes conservation, sustainable management of forests and enhancement of forest carbon (C) stocks.  相似文献   
5.
6.
The increasing use of toxic pesticides is a major environmental concern. Carbendazim is a systemic fungicide having wide applications for controlling fungal diseases in agriculture, forestry and veterinary medicines. Carbendazim is a major pollutant detectable in food, soil and water. Carbendazim extensive and repeated use induces acute and delayed toxic effects on humans, invertebrates, aquatic life forms and soil microorganisms. Here, we review the pollution, non-target toxicity and microbial degradation of carbendazim for crop and veterinary purposes. We found that carbendazim causes embryotoxicity, apoptosis, teratogenicity, infertility, hepatocellular dysfunction, endocrine-disrupting effects, disruption of haematological functions, mitotic spindle abnormalities, mutagenic and aneugenic effect. We also found that carbendazim disrupted the microbial community structure in various ecosystems. The detection of carbendazim in soil and reservoir sites is performed by spectroscopic, chromatographic, voltammetric, nanoparticles, carbon electrodes and mass spectrometry. A review of the degradation of carbendazim shows that carbendazim undergoes partial to complete biodegradation in the soil and water by Azospirillum, Aeromonas, Alternaria, Bacillus, Brevibacillus, Nocardioides, Pseudomonas, Ralstonia, Rhodococcus, Sphingomonas, Streptomyces and Trichoderma.  相似文献   
7.
印染行业清洁生产技术   总被引:3,自引:0,他引:3  
论述了目前印染行业水污染的现状及原因,指出调整产业结构、应用新工艺、大力提倡节约用水、清沽生产将是印染行业实现可持续发展的必由之路。  相似文献   
8.
ABSTRACT

A lab-scale study was conducted to determine the rate and extent of decomposition of three biofilter media materials—compost, hog fuel, and a mixture of the two in 1:1 ratio—used in biofiltration applied to removal of reduced sulfur odorous compounds from pulp mill air emissions. The rate of carbon mineralization, as a measure of biofilter media degradation, was determined by monitoring respiratory CO2 evolution and measuring the changes in carbon and nitrogen fractions of the biofilter materials over a period of 127 days. Both ambient air and air containing reduced sulfur (RS) compounds were used, and the results were compared. After 127 days of incubation with ambient air, about 17% of the media carbon was evolved as CO2 from compost as compared to 6 and 12% from hog fuel and the mixture, respectively. The decomposition showed sequential breakdown of carbon moieties, and three distinct stages were observed for each of the biofilter media. First-order rate kinetics were used to describe the decomposition stages. Decomposition rates in the initial stages were at least twice those of the following stages. Carbon mineralization showed close dependence on the C/N ratio of the biofilter material. Media decomposition was enhanced in the presence of RS gases as a result of increased bioactivity by sulfur-oxidizing bacteria and other microorganisms, thus reducing the media half-life by more than 50%. At higher concentrations of RS gases, the CO2 evolution rates were proportionally lower than those at the low concentrations because of the limited acid buffering capacity of the biofilter materials.  相似文献   
9.
Electrolytic reactive barriers (e(-) barriers) consist of closely spaced permeable electrodes installed across a groundwater contaminant plume in a permeable reactive barrier format. Application of sufficient potential to the electrodes results in sequential oxidation and reduction of the target contaminant. The objective of this study was to quantify the mass distribution of compounds produced during sequential electrolytic oxidation and reduction of ordinance related compounds (ORCs) in a laboratory analog to an e(-) barrier. In this study, a series of column tests were conducted using RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and TNT (2,4,6-trinitrotoluene) as representative ORCs. The experimental setup consisted of a plexiglass column packed with quartz-feldspar sand to simulate aquifer conditions. A single set of porous electrodes consisting of expanded titanium-mixed metal oxide mesh was placed at the midpoint of the sand column as a one-dimensional analog to an e(-) barrier. Constant current of 20mA (variable voltage) was applied to the electrode set. Initial studies involved quantification of reaction products using unlabeled RDX and TNT. Approximately 70% of the influent concentration was transformed, in one pass, through sequential oxidation-reduction for both contaminants. Following the unlabeled studies, (14)C labeled RDX and TNT were introduced to determine the mass balance. An activity balance of up to 96% was achieved for both (14)C-RDX and (14)C-TNT. For both contaminants, approximately 21% of the influent activity was mineralized to (14)CO(2). The proportion of the initial activity in the dissolved fraction was different for the two test contaminants. Approximately 30% of the initial (14)C-RDX was recovered as unreacted in the dissolved phase. The balance of the (14)C-RDX was recovered as non-volatile, non-nitroso transformation products. None of the (14)C-RDX was sorbed to the column sand packing. For (14)C-TNT approximately 51% of the initial activity was recovered in the dissolved phase, the majority was unreacted TNT. The balance of the (14)C-TNT was either sorbed to the sand packing (approximately 24%) or dissolved/mineralized as unidentified ring cleavage products ( approximately 4%).  相似文献   
10.
In the mixed crop–livestock systems, while general relation among feed quality, productivity and soil nutrient management have been reported, information on the effects of extractable soil nutrients on crop residue (CR) feed quality traits is scarce (e.g. in semiarid regions of Karnataka, India). In view of the increasingly important role of CR as feed components, in these farming systems, generating such information is a relevant research issue for sustainable development. Here, we report the occurrence and strength of relationships among extractable nutrients in soils and CR feed quality traits, and the effects of improved nutrients input on feed availability and feed quality of CR. Soil samples were collected from farmers’ fields in the semiarid zone of Karnataka and analyzed for available phosphorus (P), potassium (K), sulphur (S), zinc (Zn) and boron (B) using standard laboratory methods. Soil test results were clustered as low, medium or high based on the level of nutrient concentration. Four major farming systems involving nine crops and 419 farms were selected for on-farm trials. Under every sample farm, a plot with farmer’s practice (control) and improved fertilizer inputs (combined application of nutrients found deficient by soil testing) were laid. Performance of crops was recorded. Samples were collected for CR feed quality trait analysis using Near Infrared Reflectance Spectroscopy. The result showed that for cereal and oil crops, extractable soil S was significantly negatively associated with anti-feed quality traits such as neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) (P < 0.01), but significantly positively related to metabolizable energy (ME) and in vitro digestibility (P < 0.01). Extractable B and K levels were associated positively and significantly with NDF, ADF and ADL for oil crops and cereals. Crop level associations, for most crops, showed similar trend. Improved fertilizer inputs affected CR yield much more than it did the quality. It increased ME productivity (ME ha?1) and thereof the potential milk yield ha?1 by as high as 40 % over the control. Therefore, balanced nutrient inputs on crop land positively impact productivity of the livestock compartment of mixed crop–livestock farming system, and this knowledge can build on the currently perceived need and benefits of balanced nutrient replenishment in crop–livestock system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号