首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   3篇
  2017年   2篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.
In order to improve our understanding of the nature, measurement and prediction of salts of perfluorooctanoic acid (PFOA) in air, two studies were performed along the fence line of a fluoropolymer manufacturing facility. First, a six-event, 24-hr monitoring series was performed around the fence line using the OSHA versatile sampler (OVS) system. Perfluorooctanoate concentrations were determined as perfluorooctanoic acid (PFOA) via liquid chromatography and mass spectrometry. Those data indicated that the majority of the PFOA was present as a particulate. No vapor-phase PFOA was detected above a detection limit of approximately 0.07 microg/m3. A follow-up study using a high-volume cascade impactor verified the range of concentrations observed in the OVS data. Both studies aligned with the major transport direction and range of concentrations predicted by an air dispersion model, demonstrating that model predictions agreed with monitoring results. Results from both monitoring methods and predictions from air dispersion modeling showed the primary direction of transport for PFOA was in the prevailing wind direction. The PFOA concentration measured at the site fence over the 10-week sampling period ranged from 0.12 to 0.9 microg/m3. Modeled predictions for the same time period ranged from 0.12 to 3.84 microg/m3. Less than 6% of the particles were larger than 4 microm in size, while almost 60% of the particles were below 0.3 microm. These studies are believed to be the first published ambient air data for PFOA in the environment surrounding a manufacturing facility.  相似文献   
2.
We investigated the effects of a warmer climate, and seasonal trends, on the fate of oil spilled in the Arctic. Three well blowout scenarios, two shipping accidents and a pipeline rupture were considered. We used ensembles of numerical simulations, using the OSCAR oil spill model, with environmental data for the periods 2009–2012 and 2050–2053 (representing a warmer future) as inputs to the model. Future atmospheric forcing was based on the IPCC’s A1B scenario, with the ocean data generated by the hydrodynamic model SINMOD. We found differences in “typical” outcome of a spill in a warmer future compared to the present, mainly due to a longer season of open water. We have demonstrated that ice cover is extremely important for predicting the fate of an Arctic oil spill, and find that oil spills in a warming climate will in some cases result in greater areal coverage and shoreline exposure.  相似文献   
3.
Renewed political and commercial interest in the resources of the Arctic, the reduction in the extent and thickness of sea ice, and the recent failings that led to the Deepwater Horizon oil spill, have prompted industry and its regulatory agencies, governments, local communities and NGOs to look at all aspects of Arctic oil spill countermeasures with fresh eyes. This paper provides an overview of present oil spill response capabilities and technologies for ice-covered waters, as well as under potential future conditions driven by a changing climate. Though not an exhaustive review, we provide the key research results for oil spill response from knowledge accumulated over many decades, including significant review papers that have been prepared as well as results from recent laboratory tests, field programmes and modelling work. The three main areas covered by the review are as follows: oil weathering and modelling; oil detection and monitoring; and oil spill response techniques.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号