首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   1篇
综合类   1篇
基础理论   1篇
污染及防治   1篇
  2021年   2篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.
利用微生物的酶化作用对水体中重金属镉(Cd)进行矿化固定,以减少交换态重金属在环境中的危害;采用X射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外谱(FT-IR)等分析测试手段对2株产脲酶矿化菌株(CZW-1和CZW-3)在单一和混合培养体系下生成的矿化产物进行了表征。结果表明,混合培养能提高细菌脲酶活性、提高细菌对Cd的耐受性及对Cd的去除率。单一培养菌株CZW-1和CZW-3的产脲酶活性分别为17.09 U·mL~(-1)和18.23 U·mL~(-1),对Cd的耐受性为2 mmol·L~(-1),对Cd的去除率为78.15%、80.32%;混合培养细菌脲酶活性为20.79 U·mL~(-1),对Cd耐受性为2.5 mmol·L~(-1),对Cd的去除率为85.50%。3组矿化体系矿化产物均为晶格掺杂、椭球状的CdCO_3和CaCO_3,但细菌混合体系矿化产物的粒度更大。混合培养体系由于微生物协同作用对于重金属污染修复具有更好的效果。  相似文献   
2.
汤鼎  王晖  姜毅  赵兴青 《环境科学研究》2021,34(8):1971-1980
通过加入磷酸盐(P)和钙(Ca),促进菌株矿化铅(Pb)形成稳定的矿化物,从而降低环境中Pb的污染.该研究从矿区周边重金属污染土壤中筛选出的一株对Pb耐受的菌株Bacillus C075,在进行微生物矿化重金属的试验中加入P和Ca,以了解P和Ca的添加对菌株矿化Pb的影响.结果表明:P添加对菌株生长没有影响,当添加c(Ca2+)为10 mmol/L时菌株生长状况最佳且增强了菌株对Pb的耐受性,P和Ca的添加均能提高菌株对Pb的矿化率,矿化率分别增加了23.6%和56.9%.矿化过程中动力学曲线测得Km(米氏常数)为271.53 μmol/L,Vmax(最大酶促反应速率)为109.53 mg/(h·g),表明该菌株磷酸酶活性良好,有利于矿化反应进行.FT-IR和XRD图谱分析表明,不添加或单独添加P,生成的矿化产物均为Pb5(PO43OH,但P的添加增加了菌株表面吸附面积和吸附位点,提高了矿化率.同时添加P和Ca后出现更稳定的矿化产物Ca2Pb8(PO46(OH)2,P和Ca的添加使生成的矿化物更加稳定和致密,并且提高了菌株对Pb的耐受性及矿化率.研究显示,P和Ca的添加能够提高菌株对重金属Pb的矿化率并生成稳定的矿化物,可为提高微生物矿化修复重金属Pb污染提供参考.   相似文献   
3.
微生物诱导碳酸盐沉淀(MICP)可将游离的重金属离子转化为稳定的矿化物,在修复土壤重金属污染方面具有广阔的应用前景.本研究从铜陵矿区周边土壤中筛选得到1株产脲酶且耐镉矿化菌株CZW-1,16S rDNA鉴定为芽孢杆菌(Bacillus sp.),并将其利用于添加外源Ca2+的矿化固结Cd2+实验中.通过扫描电镜(SEM)、傅立叶红外光谱(FT-IR)以及X射线衍射(XRD)对矿化产物进行表征和分析.结果表明,添加一定浓度的Ca2+可促进细菌的生长,其最佳浓度为20 mmol·L-1.且Ca2+的添加可提高细菌的最小抑制浓度和促进脲酶活性,提高对Cd2+的矿化率,加钙前后的矿化率由68.93%提高到75.95%.通过对矿化物的定性分析,可知加钙前后的矿物沉淀由单一CdCO3变为CdCO3和CaCO3的复合沉淀,其表面也由严密紧实变成填满了小颗粒CdCO3的多孔状.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号