首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   4篇
综合类   3篇
评价与监测   3篇
  2023年   1篇
  2020年   2篇
  2017年   1篇
  2006年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
使用中流量颗粒物采样器采集台州市2015—2016年大气PM_(2.5)样品,利用气相色谱-质谱仪对样品中16种多环芳烃(PAHs)进行分析,研究PAHs的污染特征及可能来源。结果显示:PAHs总浓度为(20.69±4.84)ng/m3,浓度季节变化大小顺序依次为冬季>春季>秋季>夏季,空间变化为商住区>工业区>背景点。PM_(2.5)中PAHs以高环为主(≥4环),占86%。不同季节商住区和工业区PAHs(4环)含量均略高于背景点,PAHs(5~6环)的含量商住区略高于工业区和背景点。PAHs环数分布和比值法结果表明台州市大气PM_(2.5)中PAHs的主要来源是机动车尾气和燃煤。成年人和儿童的终生超额致癌风险(ILCR)分别为8.02×10-7和5.61×10-7,表明台州市PM_(2.5)中PAHs对人体健康影响在可接受范围内。  相似文献   
2.
空气污染指数模式的改进   总被引:3,自引:0,他引:3  
我国目前以空气污染指数API报告各城市的环境空气质量。由于我国各地环境空气质量状况差异很大,该方法在报告城市空气质量时具有较大的片面性,不能综合反应污染状况。本文针对现行的API指数法进行了模式推算和改进,新的计算模式可更客观全面地反映城市空气质量。  相似文献   
3.
为对台州市市区环境空气中PM2.5的主要来源进行全面分析,运用CMAQ(空气质量模型)模型中的ISAM源追踪算法,计算了台州市本地各类污染源及外来源对PM2.5的贡献,同时基于CMB模型的初步源解析结果,利用CMAQ模型解析二次前体物排放源的贡献,得到CMB-CMAQ联用模型的源解析结果,综合分析CMAQ模型和CMB-CMAQ联用模型解析结果最终获得台州市市区空气中PM2.5的贡献源数据.结果表明:①CMAQ模型和CMB-CMAQ联用模型解析结果均表明,台州市市区PM2.5本地源中首要贡献源为工业源,两个模型中工业源贡献率分别为20.13%和26.94%,其次为扬尘源(贡献率分别为16.98%、19.37%)和道路移动源(贡献率分别为16.44%、18.14%).②CMB-CMAQ联用模型解析结果中工业源、扬尘源和道路移动源的贡献率均高于CMAQ模型解析结果,而外来源和电力源的贡献率均低于CMAQ模型解析结果.③CMAQ模型和CMB-CMAQ联用模型综合分析分配结果表明,外来源、工业源、扬尘源、道路移动源是对区域中PM2.5贡献较大的4个污染源,贡献率分别为26.10%、22.38%、16.09%、15.07%.研究显示,台州市市区环境空气中PM2.5污染呈以工业源、扬尘源为主,道路移动源污染突出的复合型污染特征,加强这三类源的排放管理对于台州市市区PM2.5污染防治具有重要意义.   相似文献   
4.
空气污染指数计算的改进建议   总被引:2,自引:0,他引:2       下载免费PDF全文
按照<城市空气质量日报和预报技术规定>,我国对空气污染指数(Air Pollution Index,API)的计算方法是根据某一污染物的浓度求得该污染物的API分指数I,然后在各分指数中选取其中的最大值作为全市的API,即API=max(ISO2,INO2,IPM10),并根据API数值确定空气质量级别.  相似文献   
5.
利用台州市区2013—2017年O_3监测数据分析其污染特征,并采用CMAQ模型研究各类污染源对O_3的贡献率。结果表明:台州市区O_3年均浓度稳定,月均浓度4—10月较高,日小时浓度呈单峰型,峰值出现在13:00左右;在温度较高、相对湿度50%~80%、风速1.0 m/s~3.0 m/s、风向为偏东时O_3浓度相对较高,易出现超标现象;本地排放源是O_3形成的主要来源,各季节贡献率略有差异,分别为春季(72.28%)、夏季(69.95%)、秋季(69.24%)、冬季(66.28%);工艺过程源、道路移动源和居民生活源是O_(3 )形成的3大来源,贡献率分别为26.32%、12.89%和9.91%。  相似文献   
6.
基于2016—2020年台州市区大气污染物监测数据及气象观测资料,分析了台州市区PM2.5和O3的污染特征及受气象因素影响情况,并探究了不同季节下的PM2.5浓度和O3浓度的相关性及相互作用关系。2016—2020年,台州市区PM2.5年均浓度和超标天数呈显著下降趋势,O3-8 h年均浓度和超标天数总体呈上升趋势。PM2.5浓度在冬季最高,且易发生超标;O3浓度在春、夏、秋季均较高,且均会发生超标。通过相关性分析可知:PM2.5浓度与气温、相对湿度、风速、降水量呈负相关,与大气压呈正相关;O3浓度与气温、风速呈正相关,与相对湿度、降水量呈负相关。不同季节下的PM2.5浓度与O3浓度均呈正相关,两者存在协同增长。在春、夏、秋季,二次PM2.5在总PM2.5中的占比随着O3  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号