首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   2篇
污染及防治   1篇
评价与监测   3篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
We assessed the incidence of faecal-indicator bacteria in Tyume River over a 12-month period between August 2010 and July 2011. Total coliforms, faecal coliforms and enterococci were determined by the membrane filtration method. Total coliforms were detected in counts ranging from 2.1?×?102 to 3.4?×?104?CFU/100 ml. Faecal coliform counts ranged from 1?×?102 to 1.6?×?104?CFU/100 ml while enterococci counts were in the range of 3.3?×?101 to 5.1?×?103?CFU/100 ml. Indicator bacteria counts increased from upstream to downstream sampling sites. Counts of indicator bacteria at all sites were significantly affected by seasonal changes. The bacteriological qualities of the river water were poor, exceeding the guideline of 200 CFU/100 ml and 33 CFU/100 ml for faecal coliforms and enterococci, respectively, for recreational water. Faecal coliform counts also exceeded the 1,000 CFU/100 ml guideline for water used in fresh produce irrigation. Microbial source tracking results showed that faecal pollution was predominantly of human origin during spring at all sampling sites. During other seasons, human faecal pollution was largely confined to midstream and downstream sampling sites. Generally, the presence of faecal-indicator bacteria in the river water samples suggests faecal pollution of this freshwater resource, raising the possibility of the presence of pathogenic microorganisms in the water and a threat to public health.  相似文献   
2.
The physicochemical characteristics of the Buffalo River in the Eastern Cape Province of South Africa were evaluated using standard methods. The assessment was carried out with total of 72 water samples collected from six sites over a 12-month period, from August 2010 to July 2011. Water temperature ranged from 11 to 28 °C, while pH varied from 6.6 to 10.7 and turbidity from 1.7 to 133 NTU. Electrical conductivity, total dissolved solids (TDS) and salinity showed drastic variations (42.3–46,693 μS/cm, 20.3–23,350 mg/l and 0.02–33.8 PSU, respectively) and the significantly (P?<?0.05) higher mean values of these parameters recorded at Parkside reflect the influence of seawater at the Buffalo River estuary. The concentrations of other parameters ranged as follows: chloride (3.7–168 mg/l), DO (6.9–11.1), BOD (0.6–9.4), COD (3.7–45.9), nitrite–nitrogen (0.02–0.21), nitrate–nitrogen (1–4.47) and orthophosphate (0.01–1.72). There was a significant positive correlation between water temperature and DO (r?=?0.200; P?<?0.01). Significant (P?<?0.01) positive correlations also existed between TDS and salinity (r?=?0.921), COD and each of salinity (r?=?0.398), TDS (r?=?0.375) and chloride (r?=?0.330), nitrate and phosphate (r?=?0.323) and BOD and turbidity (r?=?0.290). Significant (p?<?0.01) inverse relationships existed between DO and each of phosphate (r?=??0.295) and nitrate (r?=??0.168). We conclude that the Buffalo River water quality deteriorated in the plains, compared with the upper reaches. Urgent measures are needed to safeguard the river in view of the potential health concerns as many households rely solely on the untreated river water.  相似文献   
3.
Buffalo River is an important water resource in the Eastern Cape Province of South Africa. Over a 1-year period (August 2010?CJuly 2011), we assessed the prevalence of human adenoviruses (HAdVs) at a total of 6 sites on the river and three dams along its course. HAdVs were detected by real-time quantitative PCR in about 35?% of the samples with concentrations ranging from 1.2?×?101 genome copies (GC)/l to 4.71?×?103 GC/l. HAdVs were detected at 5 of the 6 sampling sites with the detection rate ranging from 8.3?% at Rooikrantz Dam to 92?% at Parkside. The HAdV concentrations across the sampling sites were as follows: Parkside (3.25?×?102?C4.71?×?103?GC/); King William??s Town (1.02?×?102?C4.56?×?103?GC/l); and Eluxolzweni (1.17?×?102?C3.97?×?102 GC/l). Significantly (P?<?0.05) higher concentrations were detected at the non-dam sites compared to the dam sites. A very low mean concentration of 1.86?×?101 HAdV GC/l was observed at Bridle Drift Dam. While HAdVs were detected only once at Rooikrantz Dam (1.74?×?101?GC/l), no HAdV was detected at Maden Dam. Epidemiologically important serotypes, Ad40/41, constituted 83.3?%, while Ad21 made up 16.7?% of the all HAdVs detected and were characterized by qualitative PCR. The Buffalo River presents a public health risk heightened by the presence of Ad 40/41 and Ad21. Our results make imperative the need for assessing water sources for viral contamination in the interest of public health. This work is a significant contribution to the molecular epidemiology of adenoviruses and to the best of our knowledge this is the first report on detection of enteric virus from surface waters in the Eastern Cape.  相似文献   
4.
Buffalo River is an important water resource in the Eastern Cape Province of South Africa. The potential risks of infection constituted by exposure to human enteric viruses in the Buffalo River and three source water dams along its course were assessed using mean values and static quantitative microbial risk assessment (QMRA). The daily risks of infection determined by the exponential model [for human adenovirus (HAdV) and enterovirus (EnV)] and the beta-Poisson model (for hepatitis A virus (HAV) and rotavirus (RoV)) varied with sites and exposure scenario. The estimated daily risks of infection values at the sites where the respective viruses were detected, ranged from 7.31 × 10?3 to 1 (for HAdV), 4.23 × 10?2 to 6.54 × 10?1 (RoV), 2.32 × 10?4 to 1.73 × 10?1 (HAV) and 1.32 × 10?4 to 5.70 × 10?2 (EnV). The yearly risks of infection in individuals exposed to the river/dam water via drinking, recreational, domestic or irrigational activities were unacceptably high, exceeding the acceptable risk of 0.01 % (10?4 infection/person/year), and the guideline value used as by several nations for drinking water. The risks of illness and death from infection ranged from 6.58 × 10?5 to 5.0 × 10?1 and 6.58 × 10?9 to 5.0 × 10?5, respectively. The threats here are heightened by the high mortality rates for HAV, and its endemicity in South Africa. Therefore, we conclude that the Buffalo River and its source water dams are a public health hazard. The QMRA presented here is the first of its kinds in the Eastern Cape Province and provides the building block for a quantitatively oriented local guideline for water quality management in the Province.  相似文献   
5.
We assessed the quality and pollution status of source surface waters in Zaria, Nigeria by monitoring the nature, cause and extent of pollution in Samaru stream, Kubanni River and Kubanni dam over a period of 10 months, between March and December 2002. A total of 228 water samples was collected from 12 sites and analysed for a total of ten physicochemical and one bacteriological quality indicators, using standard methods. Aesthetic water quality impairment parameters were also observed. The mean values of most water quality parameters were significantly higher (P < 0.05) in both the stream and river than in the dam. There was no significant correlation between faecal coliform counts (FCC) and water temperature (in the range 15–33°C); pH (5.77–7.32); and turbidity (1.4–567 NTU). The high FCC ranged from 2.0 × 101 to 1.6 × 106 MPN/100 ml and exceeded the WHO standards for drinking water and water used for fresh-produce irrigation, and correlated positively (P < 0.05) with conductivity (in the range 68–1,029 μS/cm); TDS (10.0–70.0 mg/l); TSS (10.0–70.0 mg/l); Cl (7.5–181 mg/l); PO4P (0.01–0.41 mg/l); NO3N (0.6–3.8 mg/l) and BOD5 (0.1–14.9 mg/l). The main pollution sources were municipal wastewater, stormwater runoffs, the ABU sewage treatment plant, abattoir effluents and irrigation farms treated with chemical fertilisers. We conclude that these water bodies are potentially hazardous to public health and that proper sewage treatment and river quality monitoring are needed to warn against hazards to public health.  相似文献   
6.
The Buffalo River and its dams are major surface water sources used for fresh produce irrigation, raw water abstraction and recreation in parts of the Eastern Cape Province in South Africa. Over a 12-month period (August 2010 to July 2011), we assessed the bacteriological qualities of water from the river and 3 source water dams along its course. Faecal indicator bacteria (FIB), including total coliform (TC), faecal coliform (FC) and enterococci (ENT) counts, were high and ranged as follows: 1.9?×?102–3.8?×?107, 0–3.0?×?105 and 0–5.3?×?105?cfu/100 ml for TC, FC and ENT, respectively. Significantly (P?<?0.05) higher concentrations of FC and ENT were observed at the sampling sites located at the lower reaches of the river compared to the upper reaches, and at Bridle Drift Dam compared to the other two dams. FIB counts mostly exceeded the recommended maximum values suggested by national and international guidelines for safe fresh produce irrigation, domestic applications, full-contact recreation and livestock watering. These results show that the bacteriological qualities of the Buffalo River and dams were poor, and suggest that sewage was dumped into the Buffalo River during the study period. Urban runoffs and effluents of wastewater treatment plants appear to be important sources of faecal contamination in the river. We conclude that these water bodies represent significant public health hazards. Provision of adequate sanitary infrastructure will help prevent source water contamination, and public health education aimed at improving personal, household and community hygiene is imperative.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号