首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
安全科学   1篇
废物处理   1篇
环保管理   4篇
污染及防治   1篇
评价与监测   1篇
  2017年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2006年   3篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Introduction: This study explores predictive factors in safety culture. Method: In 2008, a sample 939 employees was drawn from 22 departments of a telecoms firm in five regions in central Taiwan. The sample completed a questionnaire containing four scales: the employer safety leadership scale, the operations manager safety leadership scale, the safety professional safety leadership scale, and the safety culture scale. The sample was then randomly split into two subsamples. One subsample was used for measures development, one for the empirical study. Results: A stepwise regression analysis found four factors with a significant impact on safety culture (R2 = 0.337): safety informing by operations managers; safety caring by employers; and safety coordination and safety regulation by safety professionals. Safety informing by operations managers (ß = 0.213) was by far the most significant predictive factor. Impact on industry: The findings of this study provide a framework for promoting a positive safety culture at the group level.  相似文献   
2.
Assessing Multi-site Drought Connections in Iran Using Empirical Copula   总被引:1,自引:0,他引:1  
Drought is a multi-dimensional natural hazard with stochastic characteristics usually related to each other. Separate univariate statistical models cannot capture the important relationships among drought characteristics, that is, severity and duration. In this study, an empirical copula is employed to construct a bivariate model of droughts, where droughts are defined as continuously negative standardized precipitation index (SPI) periods with one SPI value reaching ?1 or less. Bivariate frequency analyses in terms of recurrence intervals are performed using the established empirical copula-based bivariate drought model. The inter-connection among different regions of droughts is explored by a lower tail dependence coefficient. A nonparametric estimation based on an empirical copula is employed pairwisely to calculate the lower tail dependence coefficient among stations. The proposed method is applied to six rainfall gauge stations in Iran to explore drought properties of single sites as well as the inter-connection among multi-sites. The results show that greater mean drought severity and duration are associated with the least arrival rate of drought events, which occurs at the Ahwaz station. The tail dependence analysis reveals that distance between stations is not a key parameter. Generally, the Ahwaz and Isfahan stations have the highest probability of simultaneous droughts among the six stations.  相似文献   
3.
This paper discusses safety culture in the petrochemical sector and the causes and consequences of safety culture. A sample of 520 responses selected by simple random sampling completed questionnaires for this survey, the return rate was 86.75%. The research instrument comprises four sections: basic information, the safety leadership scale (SLS), the safety climate scale (SCS), and the safety performance scale (SPS). SPSS 12.0, a statistical software package, was used for item analysis, validity analysis, and reliability analysis. Exploratory factor analysis indicated that (1) SLS abstracted three factors such as safety caring, safety controlling, and safety coaching; (2) SCS comprised three factors such as emergency response, safety commitment, and risk perception; and (3) SPS was composed of accident investigation, safety training, safety inspections, and safety motivation. We conclude that the SLS, SCS, and SPS developed in this paper have good construct validity and internal consistency and can serve as the basis for future research.  相似文献   
4.
ABSTRACT: This paper presents a quantitative assessment framework for determining the instream flow under multiobjective water allocation criteria. The Range of Variability Approach (RVA) is employed to evaluate the hydrologic alterations caused by flow diversions, and the resulting degrees of alteration for the 32 Indicators of Hydrologic Alteration (IHAs) are integrated as an overall degree of hydrologic alteration. By including this index in the objective function, it is possible to optimize the water allocation scheme using compromise programming to minimize the hydrologic alteration and water supply shortages. The proposed methodology is applied to a case study of the Kaoping diversion weir in Taiwan. The results indicate that the current release of 9.5 m3/s as a minimum instream flow does not effectively mitigate the highly altered hydrologic regime. Increasing the instream flow would reduce the overall degree of hydrologic alteration; however, this is achieved at the cost of increasing the water supply shortages. The effects on the optimal instream flow of the weighting factors assigned to water supplies and natural flow variations are also investigated. With equal weighting assigned to the multiple objectives, the optimal instream flow of 26 m3/s leads to a less severely altered hydrologic regime, especially for those low‐flow characteristics, thereby providing a better protection of the riverine environment.  相似文献   
5.
ABSTRACT: This study analyzes possible causes of shallow ground water salinization in the coastal area of Yun‐Lin. The local hydro‐geologic setting is determined from geological drilling data and sea floor topography. Three possible causes (sea water intrusion, salt water percolation through wells, and infiltration of salty water from fish ponds) are evaluated. Chloride concentration is used as an index to measure ground water salinization. Sea water intrusion is modeled by the advective/dispersive equation, and salt water infiltration from wells and fish ponds is calculated by estimating the amount of water percolated. The determined local hydrogeologic setting suggests that the shallow aquifer may be connected to the sea water, resulting in salt water intrusion as a large amount of shallow ground water is withdrawn. The percent contributions of sea water intrusion, percolation through wells, and infiltration of water from fish ponds, to the salinization of the shallow aquifer at Ko‐Hu in the Yun‐Lin coastal area are approximately 27 percent, less than 1 percent and 73 percent, respectively. The results suggest that the vertical infiltration of salt water from fish ponds is the major cause of shallow ground water salinization in the coastal area of Yun‐Lin.  相似文献   
6.
Heating, ventilating, and air-conditioning (HVAC) systems in commercial buildings consume the largest amount of energy. Recent surge in energy cost necessitates constant re-evaluation of HVAC system for most of the buildings. The objective of this study is to present the strategic approach on energy saving analysis of the HVAC system and chiller sizing optimization for a library building. Energy modeling code (eQUEST) for buildings simulation has been applied to verify and predict the long-term energy consumption of HVAC systems. To improve the accuracy of simulation results, the actual performance curves of the chillers and pumps were the inputs of curve fitting data from on-site field measurements data. Energy consumption data acquisition from the building energy management system (BEMS) for one year has been conducted comprehensively to calibrate energy modeling and to quantify energy saving results. The results revealed good agreement between energy modeling and BEMS data with the error of less than 10%. Besides, energy savings through the chillers’ sizing based on cooling load profile could be achieved satisfactorily by utilizing energy modeling by using the actual chiller performance curve. The energy saving for HVAC system can be obtained satisfactorily at the saving of 110,362 kWh per year. It is expected that the study will stimulate a more robust investigation of energy-efficient and cost-effective HVAC system specific for library buildings.  相似文献   
7.
Abstract: Bivariate flood frequency analysis offers improved understanding of the complex flood process and useful information in preparing flood mitigation measures. However, difficulties arise from limited bivariate distribution functions available to jointly model the correlated flood peak and volume that have different univariate marginal distributions. Copulas are functions that link univariate distribution functions to form bivariate distribution functions, which can overcome such difficulties. The objective of this study was to analyze bivariate frequency of flood peak and volume using copulas. Separate univariate distributions of flood peak and volume are first fitted from observed data. Copulas are then employed to model the dependence between flood peak and volume and join the predetermined univariate marginal distributions to construct the bivariate distribution. The bivariate probabilities and associated return periods are calculated in terms of univariate marginal distributions and copulas. The advantage of using copulas is that they can separate the effect of dependence from the effects of the marginal distributions. In addition, explicit relationships between joint and univariate return periods are made possible when copulas are employed to construct bivariate distribution of floods. The annual floods of Tongtou flow gauge station in the Jhuoshuei River, Taiwan, are used to illustrate bivariate flood frequency analysis.  相似文献   
8.
This study reports on a surfactant-based flood for tetrachloroethylene (PCE) removal from a control test cell at the Dover National Test Site. The surfactant formulation (sodium dihexyl sulfosuccinate (Aerosol-MA or AMA), isopropanol and calcium chloride) was able to achieve a high concentration of PCE in swollen micelles (supersolubilization) without vertical PCE migration. The hydraulic system included eight screened wells that were operated in both vertical circulation and line drive configurations. After 10 pore volumes of flushing, the overall PCE removal was 68% (65% of which corresponded to the surfactant flooding alone). In addition, the residual PCE saturation was reduced from 0.7% to 0.2%, and the concentration of PCE in the groundwater was reduced from 37-190 mg/L before the flushing to 7.3 mg/L after flooding. Recycling the surfactant solution reduced the required surfactant mass (and thus cost, and waste) by 90%. Close to 80% of the total PCE removal was obtained during the first five pore volumes which were operated in an upward vertical circulation flow scheme. No free oil phase was observed during the test. Further analysis of multilevel sampler data suggests that most of the trapped oil remaining in the cell was likely localized in secluded regions of the aquifer, which helps explain the lower PCE groundwater concentration after remedial activities. In summary, this field study demonstrated the feasibility of surfactant-enhanced remediation to reduce the mass in the source zone and significantly reduce the PCE aqueous concentration and therefore the risk associated with the contaminant plume.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号