首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
基础理论   13篇
污染及防治   2篇
评价与监测   1篇
  2023年   1篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2015年   2篇
  2014年   3篇
  2012年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Environmental Chemistry Letters - Nanoplastics are emerging contaminants of concern for living organisms and ecosystems, yet nanoplastics are difficult to extract and analyse. Once released into...  相似文献   
2.
Metal release from serpentine soils in Sri Lanka   总被引:2,自引:0,他引:2  
Ultramafic rocks and their related soils (i.e., serpentine soils) are non-anthropogenic sources of metal contamination. Elevated concentrations of metals released from these soils into the surrounding areas and groundwater have ecological-, agricultural-, and human health-related consequences. Here we report the geochemistry of four different serpentine soil localities in Sri Lanka by coupling interpretations garnered from physicochemical properties and chemical extractions. Both Ni and Mn demonstrate appreciable release in water from the Ussangoda soils compared to the other three localities, with Ni and Mn metal release increasing with increasing ionic strengths at all sites. Sequential extraction experiments, utilized to identify “elemental pools,” indicate that Mn is mainly associated with oxides/(oxy)hydroxides, whereas Ni and Cr are bound in silicates and spinels. Nickel was the most bioavailable metal compared to Mn and Cr in all four soils, with the highest value observed in the Ussangoda soil at 168?±?6.40 mg kg?1 via the 0.01-M CaCl2 extraction. Although Mn is dominantly bound in oxides/(oxy)hydroxides, Mn is widely dispersed with concentrations reaching as high as 391 mg kg?1 (Yudhaganawa) in the organic fraction and 49 mg kg?1 (Ussangoda) in the exchangeable fraction. Despite Cr being primarily retained in the residual fraction, the second largest pool of Cr was in the organic matter fraction (693 mg kg?1 in the Yudhaganawa soil). Overall, our results support that serpentine soils in Sri Lanka offer a highly labile source of metals to the critical zone.  相似文献   
3.
Biochar has been considered as a potential sorbent for removal of frequently detected pesticides in water. In the present study, modified and non-modified rice husk biochars were used for aqueous carbofuran removal. Rice husk biochars were produced at 300, 500, and 700 °C in slow pyrolysis and further exposed to steam activation. Biochars were physicochemically characterized using proximate, ultimate, FTIR methods and used to examine equilibrium and dynamic adsorption of carbofuran. Increasing pyrolysis temperature led to a decrease of biochar yield and increase of porosity, surface area, and adsorption capacities which were further enhanced by steam activation. Carbofuran adsorption was pH-dependant, and the maximum (161 mg g?1) occurred in the vicinity of pH 5, on steam-activated biochar produced at 700 °C. Freundlich model best fitted the sorption equilibrium data. Both chemisorption and physisorption interactions on heterogeneous adsorbent surface may involve in carbofuran adsorption. Langmuir kinetics could be applied to describe carbofuran adsorption in a fixed bed. A higher carbofuran volume was treated in a column bed by a steam-activated biochar versus non-activated biochars. Overall, steam-activated rice husk biochar can be highlighted as a promising low-cost sustainable material for aqueous carbofuran removal.  相似文献   
4.
Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha?1. The CaCl2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.  相似文献   
5.
Environmental Chemistry Letters - Open dumping of municipal solid waste is a common method of waste disposal in developing countries, thus leading to pollution by gaseous emissions and landfill...  相似文献   
6.
This study examined the effects of carbon nanotube and biochar on the bioavailability of Pb, Cu and Sb in the shooting range soils for developing low-cost remediation technology. Commercially available multi-walled carbon nanotube (MWCNT) and biochar pyrolyzed from soybean stover at 300 °C (BC) at 0.5, 1 and 2.5% (w w?1) were used to remediate the contaminated soil in an incubation experiment. Both DTPA (bioavailable) and TCLP (leaching) extraction procedures were used to compare the metal/loid availability and leaching by the amendments in soil. The addition of BC was more effective in immobilizing mobile Pb and Cu in the soil than that in MWCNT. The BC reduced the concentrations of Pb and Cu in the soil by 17.6 and 16.2%, respectively. However, both MWCNTs and BC increased Sb bioavailability by 1.4-fold and 1.6-fold, respectively, in DTPA extraction, compared to the control. The toxicity characteristic leaching procedure (TCLP) test showed that the leachability of Pb in the soil amended with 2.5% MWCNT was 1.3-fold higher than that the unamended soil, whereas the BC at 2.5% decreased the TCLP-extractable Pb by 19.2%. Precipitation and adsorption via electrostatic and ππ electron donor–acceptor interactions were postulated to be involved in the interactions of Pb and Cu with surfaces of the BC in the amended soils, whereas ion exchange mechanisms might be involved in the immobilization of Cu in the MWCNT-amended soils. The application of BC derived from soybean stover can be a low-cost technology for simultaneously immobilizing bioavailable Pb and Cu in the shooting range soils; however, neither of amendments was effective in Sb immobilization.  相似文献   
7.
The use of nanoparticulate zero valent iron (NZVI) in the treatment of inorganic contaminants in landfill leachate and polluted plumes has been the subject of many studies, especially in temperate, developed countries. However, NZVI’s potential for reduction of chemical oxygen demand (COD) and treatment of metal ion mixtures has not been explored in detail. We investigated the efficiency of NZVI synthesized in the presence of starch, mercaptoacetic, mercaptosuccinic, or mercaptopropenoic acid for the reduction of COD, nutrients, and metal ions from landfill leachate in tropical Sri Lanka. Synthesized NZVI were characterized with X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR) and Brunauer–Emmett–Teller. Of the samples tested, Starch-NZVI (S-NZVI) and mercaptoacetic-NZVI (MA-NZVI) performed well for treatment both COD and metal mixture. The removal percentages for COD, nitrate-nitrogen, and phosphate from S-NZVI were 50, 88, and 99 %, respectively. Heavy metal removal was higher in S-NZVI (>95 %) than others. MA-NZVI, its oxidation products, and functional groups of its coating showed the maximum removal amounts for both Cu (56.27 mg g?1) and Zn (28.38 mg g?1). All mercapto-NZVI showed well-stabilized nature under FTIR and XRD investigations. Therefore, we suggest mercapto acids as better agents to enhance the air stability for NZVI since chemically bonded thiol and carbonyl groups actively participation for stabilization process.  相似文献   
8.
This review focuses the behaviour of arsenic in plant?Csoil and plant?Cwater systems, arsenic?Cplant cell interactions, phytoremediation, and biosorption. Arsenate and arsenite uptake by plants varies in different environment conditions. An eco-friendly and low-cost method for arsenic removal from soil?Cwater system is phytoremediation, in which living plants are used to remove arsenic from the environment or to render it less toxic. Several factors such as soil redox conditions, arsenic speciation in soils, and the presence of phosphates play a major role. Translocation factor is the important feature for categorising plants for their remediation ability. Phytoremediation techniques often do not take into account the biosorption processes of living plants and plant litter. In biosorption techniques, contaminants can be removed by a biological substrate, as a sorbent, bacteria, fungi, algae, or vascular plants surfaces based on passive binding of arsenic or other contaminants on cell wall surfaces containing special active functional groups. Evaluation of the current literature suggests that understanding molecular level processes, and kinetic aspects in phytoremediation using advanced analytical techniques are essential for designing phytoremediation technologies with improved, predictable remedial success. Hence, more efforts are needed on addressing the molecular level behaviour of arsenic in plants, kinetics of uptake, and transfer of arsenic in plants with flowing waters, remobilisation through decay, possible methylation, and volatilisation.  相似文献   
9.
Environmental Geochemistry and Health - Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published. The author’s affiliation is...  相似文献   
10.
Environmental Geochemistry and Health - Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published. The author’s affiliation is...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号