首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
综合类   2篇
污染及防治   1篇
评价与监测   1篇
社会与环境   3篇
  2019年   1篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Fish advisories for polychlorinated biphenyls (total-PCBs) and mercury are often given on a length-specific basis and fish sex is usually not considered. The relationship between concentration and length is well established for mercury, however its suitability for total-PCBs and the influence of sex over the large scale covered by most monitoring programs is not well known. Here we use what is perhaps the largest consistent sport fish contaminant dataset to evaluate the relationship between total-PCB/mercury and length and sex. We evaluated seven of the most commonly consumed fishes from the Canadian Great Lakes and two Ontario (Canada) inland lakes. For mercury, the relationship between concentration and length was significant (p<0.05) in most fish species and locations. For total-PCB, this relationship was also generally significant in Chinook salmon and lake trout, which are the species with the most advisories for this compound. In contrast, significant relationships were found less often for whitefish, northern pike, smallmouth bass, walleye, and especially yellow perch. However, mercury usually drives fish consumption advisories for these species. Overall, our results support the protocol of issuing contaminant advice on a length-specific basis in fish monitoring programs with reasonable confidence when at least a moderate number of samples over the natural size range of a species are included in the analysis. Sex differences were common for walleye (males>females, p<0.05) but not other species, suggesting that an equal number of male and female walleye should be used in deriving fish advisories for walleye.  相似文献   
2.
The English-Wabigoon River system in Northwestern Ontario, Canada, was one of the most heavily mercury-contaminated waterways in the world due to historical discharges in the 1960s from a chlor-alkali plant. This study examines long-term (1970-2010) monitoring data to assess temporal trends in mercury contamination in Walleye, Northern Pike and Lake Whitefish, three species important for sport and subsistence fishing in this region, using dynamic linear modeling and piecewise regression. For all lakes and species, there is a significant decline (36-94%) in mercury concentrations through time; however, there is evidence that this decline is either slowing down or levelling off. Concentrations in the English-Wabigoon fish are elevated, and may still present a potential health risk to humans consuming fish from this system. Various biotic and abiotic factors are examined as possible explanations to slowing rates of decline in mercury concentrations observed in the mid-1980s.  相似文献   
3.
4.
Toxic Equivalency Factors (TEFs) are an essential part of the Toxic Equivalent (TEQ) concept and have evolved for dioxins/dioxin-like compounds over the last two and half decades. Therefore, it is difficult to compare past and current TEQs that are reported using different TEFs without explicitly mentioning underlying congener concentrations. Using what likely is the largest known dioxin/furan (PCDD/F) and dioxin-like polychlorinated biphenyl (dl-PCB or DLP) fish database, here we present regression models that can facilitate conversion of a fish TEQ from an old to a newer TEF scheme. The results show that the mammalian PCDD/F-TEQ based on the latest TEF(WHO-05) is about 7.5% lower than that based on TEF(WHO-98). The mammalian DLP-TEQ(WHO-05) is on average 25-26% lower than almost identical DLP-TEQ(WHO-94) and DLP-TEQ(WHO-98). Total-TEQ(WHO-05) is on average 22% lower than Total-TEQ(WHO-98). According to the current toxicological standards for dioxins/furans, all previous major TEF schemes except TEF(Germany-85) and TEF(USEPA-87) were conservative (i.e., higher) in estimating TEQs. The major (> 75%) contribution to PCDD/F-TEQ(WHO-05) is from 2,3,7,8-TCDD (33%), 1,2,3,7,8-PCDD (26%), 2,3,7,8-TCDF (10%), and 2,3,4,7,8-PCDF (9%). The DLP-TEQ(WHO-05) is dominated by PCB-126 which on average contributes about 88%. The DLP-TEQ generally contribute > 70% of Total-TEQ. When reporting TEQs, we recommend that the underlying congener specific concentrations are presented, TEF scheme used is clearly stated, names of compounds included are explicitly expressed, and TEQs are identified accordingly (e.g., DLP-TEQ, PCDD/F-TEQ, Total-TEQ).  相似文献   
5.
Atmospheric deposition of metals emitted from mining operations has raised metal concentrations in the surrounding soils. This repository may be remobilized and act as a source of metals to nearby surface aquatic systems. It is important to understand metal dynamics and the impact of various chemistry and fate parameters on metal movement in the soil environment in order to evaluate risk associated with metals in terrestrial ecosystems and accurately establish critical discharge limits that are protective of aquatic biota. Here we extend our previously developed coupled multispecies metal fate-TRANsport and SPECiation/complexation (TRANSPEC) model, which was applicable to surface aquatic systems. The extended TRANSPEC, termed TRANSPEC-II, estimates the partition coefficient, K(d), between the soil-solid and -soluble phases using site-specific data and a semi-empirical regression model obtained from literature. A geochemical model calculates metal and species fractions in the dissolved and colloidal phases of the soil solution. The multispecies fugacity/aquivalence based fate-transport model then estimates inter-media transport rates such as leaching from soil, soil runoff, and water-sediment exchanges of each metal species. The model is illustratively applied to Ni in the Kelly Lake watershed (Sudbury, Ontario, Canada), where several mining operations are located. The model results suggest that the current atmospheric fallout supplies only 4% of Ni removed from soil through soil runoff and leaching. Soil runoff contributes about 20% of Ni entering into Kelly Lake with the rest coming from other sources. Leaching to groundwater, apart from runoff, is also a major loss process for Ni in the soil. A sensitivity analysis indicates that raising soil pH to above 6 may substantially reduce metal runoff and improve water quality of nearby water bodies that are impacted by runoff.  相似文献   
6.
Much debate exists on the future direction of policy related to the deca-brominated diphenyl ethers (deca-BDE) mixture. This debate, in part, results from the fact that BDE-209 can debrominate to more toxic lower-polybrominated diphenyl ethers (PBDEs). However, such debromination is difficult to study using measured concentrations alone because of the short-term nature of laboratory experiments and the presence of lower-brominated congeners in the environment. Here, a rigorously calibrated, multichemical, dynamic fish model (Bhavsar et al. 2008, Environ. Sci. Technol., 42, 3724-3731) is used to predict the debromination of BDE-209 to more toxic lower-brominated PBDEs over a 15-year life period of piscivorous- and non-piscivorous lake trout (pLT, npLT; Salvelinus namaycush). A sensitivity analysis was performed by changing BDE-209 dietary dose, gut absorption efficiency and half-life for generally conservative scenarios. Estimated BDE-209, -99 and -47 concentrations were compared with human fish consumption guidelines developed using the draft U.S.EPA tolerable daily intakes. The model predicted that bioaccumulation of BDE-209 as well as BDE-47 and -99 due to dietary exposure to deca-BDE over the 15-year period would not be appreciable in pLT (generally unrestricted consumption advisory) and would be moderate in npLT (unrestricted to 2 meals/month advisory) even for worst-case scenarios.  相似文献   
7.
The use of biopsy plugs to sample fish muscle tissue for mercury analyses is a viable alternative to lethal sampling; however, the practice has yet to be widely implemented in routine monitoring due to concerns about variability of mercury concentrations in fish muscle tissues. Here we examine distribution of mercury in fillets of four fish species (Walleye, Northern Pike, Smallmouth Bass and Lake Trout), suitability of left/right side of fillet for biopsy sampling, and appropriateness of re-using a biopsy punch. The results showed that average mercury concentrations in left and right fillets of fish are similar. Mercury concentrations in biopsy plug samples, taken from the anterior dorsal area of the fish fillet, were statistically equivalent to the mercury concentrations in homogenized fillets. There was no discernible cross contamination between samples when a biopsy punch was reused after washing in hot soapy water, and as such, biopsy punches can be recycled during sampling to reduce the sampling cost. If a tissue mass collected from a specific site on the fillet is insufficient, then we suggest sampling corresponding locations on the other fillet rather than sampling two adjacent sites on one fillet to obtain more tissue. The results presented here can improve the accuracy of fillet biopsy plug sampling, minimize fish mortality for mercury monitoring, and reduce labor and material costs in monitoring programs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号