首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
  国内免费   1篇
安全科学   5篇
废物处理   5篇
环保管理   5篇
综合类   18篇
基础理论   22篇
环境理论   1篇
污染及防治   16篇
评价与监测   2篇
社会与环境   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有75条查询结果,搜索用时 93 毫秒
1.
In the Wasatch Range Metropolitan Area of Northern Utah, water management decision makers confront multiple forms of uncertainty and risk. Adapting to these uncertainties and risks is critical for maintaining the long‐term sustainability of the region's water supply. This study draws on interview data to assess the major challenges climatic and social changes pose to Utah's water future, as well as potential solutions. The study identifies the water management adaptation decision‐making space shaped by the interacting institutional, social, economic, political, and biophysical processes that enable and constrain sustainable water management. The study finds water managers and other water actors see challenges related to reallocating water, including equitable water transfers and stakeholder cooperation, addressing population growth, and locating additional water supplies, as more problematic than the challenges posed by climate change. Furthermore, there is significant disagreement between water actors over how to best adapt to both climatic and social changes. This study concludes with a discussion of the path dependencies that present challenges to adaptive water management decision making, as well as opportunities for the pursuit of a new water management paradigm based on soft‐path solutions. Such knowledge is useful for understanding the institutional and social adaptations needed for water management to successfully address future uncertainties and risks.  相似文献   
2.
This study focuses on analyses of greenhouse gas (GHG) emission reductions, from the perspective of interrelationships among time points and countries, in order to seek effective reductions. We assessed GHG emission reduction potentials and costs in 2020 and 2030 by country and sector, using a GHG emission reduction-assessment model of high resolution regarding region and technology, and of high consistency with intertemporal, interregional, and intersectoral relationships. Global GHG emission reduction potentials relative to baseline emissions in 2020 are 8.4, 14.7, and 18.9 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 /tCO2eq., corresponding to +33, +8, and −3 %, respectively, relative to 2005. Global emission reduction potentials at a cost below 50 $/tCO2eq. for nuclear power and carbon capture and storage are 2.3 and 2.2 GtCO2eq., respectively, relative to baseline emissions in 2030. Longer-term perspectives on GHG emission reductions toward 2030 will yield more cost-effective reduction scenarios for 2020 as well.  相似文献   
3.
Many of the numerous difficult issues facing the world today involve relationships entailing trade‐offs and synergies. This study quantitatively assesses some alternative scenarios using integrated assessment models, and provides several indicators relating to sustainable development and climate change, such as indicators of income (per capita GDP), poverty, water stress, food access, sustainable energy use, energy security, and ocean acidification, with high consistencies among the indicators within a scenario. According to the analyses, economic growth helps improve many of the indicators for sustainable development. On the other hand, climate change will induce some severe impacts such as ocean acidification under a non‐climate intervention scenario (baseline scenario). Deep emission reductions, such as to 2°C above the pre‐industrial level, could cause some sustainable development indicators to worsen. There are complex trade‐offs between climate change mitigation levels and several sustainable development indicators. A delicately balanced approach to economic growth will be necessary for sustainable development and responses to climate change.  相似文献   
4.
This paper focuses on the improvement of a secondary lead recycling processing plant, giving special attention to the generation of lead slag. The study was conducted using two different industrial rotary furnaces that together produce three different slag types, which depend on charge composition and lead-containing raw material obtained from a lead-acid battery recycling process. First, characterization of three slag types from different batches was performed, and such characterization included chemical, mineralogical, and structural analyses. By analyzing these data and the operational conditions of the process, it was possible to identify certain deficiencies in the recycling process and implement modifications in order to improve it. A reduction of up to 25% in the quantity of slag generated could be achieved with certain charges. In addition to this process improvement, it was possible to reduce the toxicity of the slag produced when processing a charge containing the same proportion of paste and grid as the lead-acid battery. This improvement lessens the overall environmental impact of the process. By applying this methodology, it was possible to determine some principles of cleaner production in the lead recycling process. So, waste generation could be reduced via improvements in the process and slag characteristics were modified to decrease its toxicity (as determined by lead content in leaching tests).  相似文献   
5.
6.
Male mate choice has recently been reported in some animals with male–male competition. In the laboratory, we examined whether males choose their mates based on female quality that was indicated by body size and/or days to prenuptial molt, and the effects of female quality on male–male competition in the hermit crab Pagurus nigrofascia. We collected samples from April to May 2009 at an intertidal shore in Hokkaido, Japan (41°N, 140°E). When a male simultaneously encountered two receptive females in the mate choice experiment, males chose females which require less time to molt. When a male guarding a female with less time to molt was challenged by an intruder, the guarding male defended the female for a longer period and was more likely to win the contest. These results indicate that male P. nigrofascia use time to molt to discriminate between females.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号