首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
废物处理   1篇
环保管理   4篇
综合类   1篇
基础理论   4篇
污染及防治   7篇
评价与监测   4篇
社会与环境   3篇
  2023年   2篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2011年   3篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1988年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Environment, Development and Sustainability - Realisation of the sustainable development goals (SDGs) will provide improvements to people's lives and longevity of the planet. The architectural,...  相似文献   
2.
According to observed twentieth century temperature trends and twenty-first century climate model projections, the region that encompasses the eastern Mediterranean and the Middle East (EMME) is identified as a climate change hot spot. We extend previous studies by a comprehensive climatology of heat waves in the EMME based on regional climate model simulations for the recent past and the end of the twenty-first century. A percentile-based definition of heat waves is used to account for local climatic conditions. Spatial patterns of several heat wave properties are assessed and associated with atmospheric circulation regimes over specific locations. To cover a range of possible future climates, we use three SRES emission scenarios. According to our results, all indices that characterize heat wave severity will strongly increase compared with the control period of 1961–1990. The northern part of the EMME could be exposed to increased heat wave amplitudes by 6–10 °C, and the southern part may experience 2–3 months more combined hot days and tropical nights. Heat wave peak temperatures will be higher due to the overall mean warming as well as stronger summer anticyclonic conditions. The projected changes will affect human health and the environment in multiple ways and call for impact studies to support the development of adaptation strategies.  相似文献   
3.
We present climate change projections and apply indices of weather extremes for the Mediterranean island Cyprus using data from regional climate model (RCM) simulations driven by the IPCC A1B scenario within the ENSEMBLES project. Daily time-series of temperature and precipitation were used from six RCMs for a reference period 1976–2000 and for 2026–2050 (‘future‘) for representative locations, applying a performance selection among neighboring model grid-boxes. The annual average temperatures of the model ensemble have a ±1.5°C bias from the observations (negative for maximum and positive for minimum temperature), and the models underestimate annual precipitation totals by 4–17%. The climatological annual cycles for the observations fall within the 1σ range of the 6-model average, highlighting the strength of using multi-model output. We obtain reasonable agreement between models and observations for the temperature-related indices of extremes for the recent past, while the comparison is less good for the precipitation-related extremes. For the future, the RCM ensemble shows significant warming of 1°C in winter to 2°C in the summer for both maximum and minimum temperatures. Rainfall is projected to decrease by 2–8%, although this is not statistically significant. Our results indicate the shift of the mean climate to a warmer state, with a relatively strong increase in the warm extremes. The precipitation frequency is projected to decrease at the inland Nicosia and at the coastal Limassol, while the mountainous Saittas could experience more frequent 5–15 mm/day rainfall. In future, very hot days are expected to increase by more than 2 weeks/year and tropical nights by 1 month/year. The annual number of consecutive dry days shows a statistically significant increase (of 9 days) in Limassol. These projected changes of the Cyprus climate may adversely affect ecosystems and the economy of the island and emphasize the need for adaptation strategies.  相似文献   
4.
Environmental Science and Pollution Research - A quantitative microbial risk assessment was conducted to assess the health risks associated with the exposure of agricultural workers to tertiary...  相似文献   
5.
This study presents a comparative evaluation of the prognostic meteorological Fifth Generation NCAR Pennsylvania State University Mesoscale Model (MM5) using data from the Northeast Oxidant and Particle Study (NE-OPS) research program collected over Philadelphia, PA during a summer episode in 1999. A set of model simulations utilizing a nested grid of 36 km, 12 km and 4 km horizontal resolutions with 21 layers in the vertical direction was performed for a period of 101 h from July 15, 1999; 12 UTC to July 19, 1999; 17 UTC. The model predictions obtained with 4 km horizontal grid resolution were compared with the NE-OPS observations. Comparisons of model temperature with aircraft data revealed that the model exhibited slight underestimation as noted by previous investigators. Comparisons of model temperature with aircraft and tethered balloon data indicate that the mean absolute error varied up to 1.5 °C. The comparisons of model relative humidity with aircraft and tethered balloon indicate that the mean relative error varied from –11% to –22% for the tethered balloon and from –5% to –30% for the aircraft data. The mean relative error for water vapor mixing ratio with respect to the lidar data exhibited a negative bias consistent with the humidity bias corresponding to aircraft and tethered balloon data. The tendency of MM5 to produce estimates of very low wind speeds, especially in the early-mid afternoon hours, as noted by earlier investigators, is seen in this study also. It is indeed true that the initial fields as well as the fields utilized in the data assimilation also contribute to some of the differences between the model and observations. Studies such as these which compare the grid averaged mean state variables with observations have inherent difficulties. Despite the above limitations, the results of the present study broadly conform to the general traits of MM5 as noted by earlier investigators.  相似文献   
6.
7.
This study presents a large-eddy simulation (LES) study of the convective boundary layer on August 1, 1999 over Philadelphia, PA during a summer ozone episode. The study is an evaluation of the Colorado State University's Regional Atmospheric Modeling System Version 4.3 (RAMS4.3) with the LES option using Northeast Oxidant and Particulate Study (NE-OPS) data. Simulations were performed with different imposed sensible heat fluxes at the ground surface. The model was initialized with the atmospheric sounding data collected at Philadelphia at 1230 UTC and model integrations continued till 2130 UTC. The resulting mean profiles of temperature and humidity obtained from the LES model were compared with atmospheric soundings, tethered balloon and aircraft data collected during the NE-OPS 1999 field campaign. Also the model-derived vertical profiles of virtual temperature were compared with NE-OPS Radio Acoustic Sounder System (RASS) data while the humidity profiles were compared with NE-OPS lidar data. The comparison of the radiosonde data with the LES model predictions suggests that the growth of the mixing layer is reasonably well simulated by the model. Overall, the agreement of temperature predictions of the LES model with the radiosonde observations is good. The model appears to underestimate humidity values for the case of higher imposed sensible heat flux. However, the humidity values in the mixing layer agree quite well with radiosonde observations for the case of lower imposed sensible heat flux. The model-predicted temperature and humidity profiles are in reasonable agreement with the tethered balloon data except for some small overestimation of temperature at lower layers and some underestimation of humidity values. However, the humidity profiles as simulated by the model agree quite well with the tethered balloon data for the case of lower imposed sensible heat flux. The model-predicted virtual temperature profile is also in better agreement with RASS data for the case of lower imposed sensible heat flux. The model-predicted temperature profile further agrees quite well with aircraft data for the case of lower imposed heat flux. However, the relative humidity values predicted by the model are lower compared with the aircraft data. The model-predicted humidity profiles are only in partial agreement with the lidar data. The results of this study suggest that the explicitly resolved energetic eddies seem to provide the correct forcing necessary to produce good agreement with observations for the case of an imposed sensible heat flux of 0.1 K m s–1 at the surface.  相似文献   
8.
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.  相似文献   
9.
A statistical methodology formulated for defining background or baseline levels of constituents of concern in groundwater is presented. The methodology was developed for the case where prior delineation of unimpacted areas is not possible because of site history and a large set of groundwater monitoring measurements exists. Consideration was given to spatial and temporal trends, outliers, and final segregation of wells into impacted or unimpacted categories to develop probability distributions and summary statistics for each constituent evaluated. The formulated approaches were applied to groundwater monitoring data for the U.S. Department of Energy Savannah River Site facility, and results for four representative constituents (aluminum, arsenic, mercury, and tritium) are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号