首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
环保管理   14篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  2000年   3篇
  1997年   1篇
  1995年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
ABSTRACT: High springtime river flows came earlier by one to two weeks in large parts of northern New England during the 20th Century. In this study it was hypothesized that late spring/early summer recessional flows and late summer/early fall low flows could also be occurring earlier. This could result in a longer period of low flow recession and a decrease in the magnitude of low flows. To test this hypothesis, variations over time in the magnitude and timing of low flows were analyzed. To help understand the relation between low flows and climatic variables in New England, low flows were correlated with air temperatures and precipitation. Analysis of data from 23 rural, unregulated rivers across New England indicated little evidence of consistent changes in the timing or magnitude of late summer/early fall low flows during the 20th Century. The interannual variability in the timing and magnitude of the low flows in northern New England was explained much more by the interannual variability in precipitation than by the interannual variability of air temperatures. The highest correlation between the magnitude of the low flows and air temperatures was with May through November temperatures (r =?0.37, p= 0.0017), while the highest correlation with precipitation was with July through August precipitation (r = 0.67, p > 0.0001).  相似文献   
2.
ABSTRACT: A one-layer decreasing-availability monthly water balance model is used to estimate monthly surplus that flows into the Lake Pontchartrain Basin from the Amite, Tickfaw, Natalbany, Tangipahoa, and Tchefuncte Rivers for water years 1949 through 1990. The modeled annual surplus for each drainage basin is compared to gauged annual discharge obtained from the United States Geological Survey. This provides an estimate of the differential success of the model over watersheds of various sizes, and also suggests appropriate adjustment factors to be used in future water balance analyses of similar basins in humid subtropical climate regions. Results show that annual surplus values agree well with the USGS values, after an annual adjustment of about 140 mm (11 to 28 percent of the basin surplus) is subtracted from the annual modeled totals to compensate for overestimation by the model. However, inter-annual variability is high in the annual cycles. Winter and spring discharges can also be modeled successfully.  相似文献   
3.
ABSTRACT: A 2xCO2 climate and runoff in the Upper Deschutes Basin in central Oregon is simulated using a mesoscale atmospheric model and a watershed model that incorporates spatial variability of the runoff process. A nine‐year control climate monthly time series provides a benchmark for assessing changes related to a warmer and wetter 2xCO2 climate. Potential evapotranspiration is increased by 23 percent and snow water equivalent is reduced by 59 percent in the 2xCO2 climate. Annual runoff increases by 23 percent, while November runoff increases by 55 percent. The average maximum monthly runoff is in May for both the control climate and 2xCO2 climate, but in five of the nine years the monthly maximum runoff for the 2xCO2 climate occurs two to five months earlier than for the control climate. The minimum runoff month is one to five months earlier in the 2xCO2 climate in seven of the nine years, and the month of average minimum runoff is March in the control climate and November in the 2xCO2 climate. Since precipitation is greatest in December in both the control climate and 2xCO2 climate, the earlier maximum and minimum runoff for a 2xCO2 climate indicates greater watershed sensitivity to temperature than to precipitation.  相似文献   
4.
Model‐estimated monthly water balance components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff (R)) for 146 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Colorado River Basin (CRB) are used to examine the temporal and spatial variability of the CRB water balance for water years 1901 through 2014 (a water year is the period from October 1 of one year through September 30 of the following year). Results indicate that the CRB can be divided into six subregions with similar temporal variability in monthly R. The water balance analyses indicated that approximately 75% of total water‐year R is generated by just one CRB subregion and that most of the R in the basin is derived from surplus (S) water generated during the months of October through April. Furthermore, the analyses show that temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the northwestern conterminous U.S. (CONUS) and positive atmospheric pressure anomalies over the southeastern CONUS. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the North Pacific Ocean into the CRB, particularly the Upper CRB. Additionally, the occurrence of extreme dry and wet periods in the CRB appears to be related to variability of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation.  相似文献   
5.
Armstrong, William H., Mathias J. Collins, and Noah P. Snyder, 2012. Increased Frequency of Low‐Magnitude Floods in New England. Journal of the American Water Resources Association (JAWRA) 48(2): 306‐320. DOI: 10.1111/j.1752‐1688.2011.00613.x Abstract: Recent studies document increasing precipitation and streamflow in the northeastern United States throughout the 20th and early 21st Centuries. Annual peak discharges have increased over this period on many New England rivers with dominantly natural streamflow – especially for smaller, more frequent floods. To better investigate high‐frequency floods (<5‐year recurrence interval), we analyze the partial duration flood series for 23 New England rivers selected for minimal human impact. The study rivers have continuous records through 2006 and an average period of record of 71 years. Twenty‐two of the 23 rivers show increasing trends in peaks over threshold per water year (POT/WY) – a direct measure of flood frequency – using the Mann‐Kendall trend test. Ten of these trends had p < 0.1. Seventeen rivers show positive trends in flood magnitude, six of which had p < 0.1. We also investigate a potential hydroclimatic shift in the region around 1970. Twenty‐two of the 23 rivers show increased POT/WY in the post‐1970 period when comparing pre‐ and post‐1970 records using the Wilcoxon rank‐sum test. More than half of these increases have p < 0.1, indicating a shift in flow regime toward more frequent flooding. Region wide, we found a median increase of one flood per year for the post‐1970 period. Because frequent floods are important channel‐forming flows, these results have implications for channel and floodplain morphology, aquatic habitat, and restoration.  相似文献   
6.
ABSTRACT: The flood hydroclimatology of the Grand Forks flood of April 1997, the most costly flood on a per capita basis for a major metropolitan area in United States history, is analyzed in terms of the natural processes that control spring snowmelt flooding in the region. The geomorphological characteristics of the basin are reviewed, and an integrated assessment of the hydroclimatological conditions during the winter of 1996 to 1997 is presented to gain a real‐world understanding of the physical basis of this catastrophic flood event. The Grand Forks flood resulted from the principal flood‐producing factors occurring at either historic or extreme levels, or at levels conducive to severe flooding. Above normal fall precipitation increased the fall soil moisture storage and reduced the spring soil moisture storage potential. A concrete frost layer developed that effectively reduced the soil infiltration capacity to zero. Record snowfall totals and snow cover depths occurred across the basin because of the unusual persistence of a blocking high circulation pattern throughout the winter. A severe, late spring blizzard delayed the snowmelt season and replenished the snow cover to record levels for early April. This blizzard was followed by a sudden transition to an extreme late season thaw due to the abrupt breakdown of the blocking circulation pattern. The presence of river ice contributed to backwater effects and affected the timing of tributary inflows to the main stem of the Red River. Only the absence of spring rains prevented an even more catastrophic flood disaster from taking place. This paper contributes to our understanding of the flood hydroclimatology of catastrophic flood events in an unusual flood hazard region that possesses relatively flat terrain, a north‐flowing river, and an annual peak discharge time series dominated by spring snowmelt floods.  相似文献   
7.
ABSTRACT: The meteorology flood hydroclimatolog and socioeconomic impacts of the Flood of January 1996 in the Susquehanna River Basin are explored. The analysis explains how an unusual storm system brought high humidities, high temperatures, strong winds, and heavy rain to the basin. The rapid melt of the deep snowpack, combined with the heavy rainfall, produced the sudden release of large volumes of water. Because the ground surface was frozen or saturated, this water moved primarily as overland flow. Thus, the flood waters were not restricted to areas immediately adjacent to stream channels and, consequently, some of the largest impacts were on people, property, and infrastructure in areas not normally prone to flooding. Socioeconomic patterns of flooding over time and space are investigated to put this flood into context and to highlight its impacts. The analysis concludes that if such overland flooding is a more common feature of climate change, then the current vulnerability to this form of flooding and its economic implications must be considered carefully.  相似文献   
8.
The southern interior ecoprovince (SIE) of British Columbia, Canada represents the northernmost extent of the great western North American deserts, it is experiencing some of the nation's fastest economic and population growth making it one of Canada's most water‐stressed regions, and it includes two headwater basins of the transboundary (Canada‐US) Columbia River. Statistical trend analyses were performed on 90‐year regional indicator time series for annual conditions in observed temperature, precipitation, and streamflow reflecting the three major SIE river basins: the Thompson, and transboundary Okanagan and Similkameen. Results suggest that regional climate has grown warmer and wetter, but with little net impact on total water supply availability. The outcome might reflect mutual cancellation of increases in precipitation inputs vs. evapotranspiration losses. Conclusions appeared largely insensitive to low‐pass data filtering, Pacific Decadal Oscillation effects, or solar output variability. Ensemble historical global climate model runs over the same time interval support this absence of appreciable trend in regionally integrated annual runoff volume, but a possible mismatch in precipitation results suggests a direction for further study. Overall, while important changes in hydrologic timing and extremes are likely occurring here, there is limited evidence for a net change in overall water supply availability over the last century.  相似文献   
9.
Model estimated monthly water balance (WB) components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff [R]) for 848 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Mississippi River Basin (MRB) are used to examine the temporal and spatial variability of the MRB WB for water years 1901 through 2014. Results indicate the MRB can be divided into nine subregions with similar temporal variability in R. The WB analyses indicated ~79% of total water‐year MRB runoff is generated by four of the nine subregions and most of the R in the basin is derived from surplus (S) water during the months of December through May. Furthermore, the analyses showed temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the western U.S. and positive atmospheric pressure anomalies over the eastern U.S. coast. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the Gulf of Mexico into the MRB. In the context of paleo‐climate reconstructions of the Palmer Drought Severity Index, since about 1900 the MRB has experienced wetter conditions than were experienced during the previous 500 years.  相似文献   
10.
ABSTRACT: The potential impacts of climate change on water yield are examined in the Upper Wind River Basin. This is a high‐elevation, mountain basin with a snowfall/snowmelt dominated stream‐flow hydrograph. A variety of physiographic conditions are represented in the rangeland, coniferous forests, and high‐elevation alpine regions. The Soil Water Assessment Tool (SWAT) is used to model the baseline input time series data and climate change scenarios. Five hydroclimatic variables (temperature, precipitation, CO2, radiation, and humidity) are examined using sensitivity tests of individual and coupled variables with a constant change and coupled variables with a monthly change. Results indicate that the most influential variable on annual water yield is precipitation; and, the most influential variable on the timing of streamflow is temperature. Carbon dioxide, radiation, and humidity each noticeably impact water yield, but less significantly. The coupled variable analyses represent a more realistic climate change regime and reflect the combined response of the basin to each variable; for example, increased temperature offsets the effects of increased precipitation and magnifies the effects of decreased precipitation. This paper shows that the hydrologic response to climate change depends largely on the hydroclimatic variables examined and that each variable has a unique effect (e.g., magnitude, timing) on water yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号