首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   12篇
  国内免费   65篇
安全科学   2篇
废物处理   2篇
环保管理   14篇
综合类   79篇
基础理论   37篇
污染及防治   44篇
评价与监测   11篇
  2023年   1篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   7篇
  2016年   6篇
  2015年   3篇
  2014年   10篇
  2013年   39篇
  2012年   11篇
  2011年   8篇
  2010年   5篇
  2009年   1篇
  2008年   10篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   11篇
  2003年   2篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1982年   1篇
排序方式: 共有189条查询结果,搜索用时 78 毫秒
1.
为探究不同裂解温度下稻壳生物炭的结构和性质差异及其对阿特拉津(AT)的吸附作用机制和构-效关系,以稻壳为原料在300、500和700℃下制备稻壳生物炭(分别记为RH300、RH500、RH700),通过电镜扫描、元素分析仪、比表面积分析仪和傅里叶变换红外光谱分析仪等对3种稻壳生物炭进行结构表征分析,并采用批量等温吸附法研究稻壳生物炭对AT的吸附特性.结果表明:裂解温度由300℃升至700℃时,稻壳生物炭中w(C)由48.81%升至64.67%,w(H)、w(N)和w(O)则由3.22%、1.45%和34.66%分别降至0.89%、0.92%和16.29%,原子比H/C、O/C和(O+N)/C值均降低.可见,随着裂解温度升高,稻壳生物炭的芳香性增强,亲水性和极性降低,且比表面积和孔体积增大,平均孔径减小.3种稻壳生物炭对AT的吸附均可用Freundlich和Langmuir两种等温吸附模型进行较好地拟合(R≥0.948,P < 0.01),吸附作用及非线性程度与生物炭的比表面积(SSA)、芳香性(H/C)、亲水性(O/C)和极性〔(O+N)/C〕呈良好的指数关系,大小表现为RH700 > RH500 > RH300.稻壳生物炭对AT的吸附机制主要包括分配作用和表面吸附,分配作用强度与生物炭的极性和炭化程度有关;而表面吸附作用与AT的分子大小有关,3种稻壳生物炭对AT的表面吸附除表面覆盖外,还存在多层平铺、毛细管现象和孔隙填充等.研究显示,裂解温度是影响生物炭吸附有机污染物的重要因素,在综合考虑成本和制备工艺的同时,适当提高裂解温度可增强生物炭对有机污染物的吸附作用.   相似文献   
2.
A study was carried out in a part of Palar and Cheyyar river basin to evaluate the current status of iron, manganese, zinc and atrazine concentrations, their origin and distribution in groundwater. Groundwater samples were collected during post-monsoon (March 1998 and February 1999) and pre-monsoon (June 1999) periods from 41 sampling wells distributed throughout the study area. The groundwater samples were analyzed for trace metals using AAS and atrazine using HPLC. The concentration of the trace elements in groundwater is predominant during pre-monsoon period. Distribution pattern indicates that the concentration of these elements increases from west to northeast and towards Palar river. Lower concentrations in the central part may be due to recharge of fresh water from the lakes located here. During most of the months, as there is no flow in Palar river, the concentrations of trace elements in groundwater are high. Drinking water standards indicate that Mn and Zn cross the permissible limit recommended by EPA during the pre-monsoon period. A comparison of groundwater data with trace element chemistry of rock samples shows the abundance of trace elements both in the rock and water in the order of Fe > Mn > Zn and Fe > Zn > Mn. This indicates that iron in groundwater is derived from lithogenic origin. Further, Fe, Mn and Zn have good correlation in rock samples, while it is reverse in the case of water samples, indicating the non-lithogenic origin of Mn and Zn. Atrazine (a herbicide) was not detected in any of the groundwater samples in the study area, perhaps due to low-application rate and adsorption in the soil materials.  相似文献   
3.
In 1988, the Iowa Department of Natural Resources, along withthe University of Iowa, conducted the Statewide Rural WellWater Survey, commonly known as SWRL. A total of 686private rural drinking water wells was selected by use of aprobability sample and tested for pesticides and nitrate. A subsetof these wells, the 10% repeat wells, were additionally sampledin October, 1990 and June, 1991. Starting in November, 1991,the University of Iowa, with sponsorship from the United StatesEnvironmental Protection Agency, revisited the 10% repeat wellsto begin a study of the temporal variability of atrazine and nitratein wells. Other wells, which had originally tested positive foratrazine in SWRL but were not in the 10% population, wereadded to the study population. Temporal sampling for a year-long period began in February of 1992 and concluded in Januaryof 1993. All wells were sampled monthly, a subset was sampledweekly, and a second subset was sampled for 14 day consecutiveperiods. Of the 67 wells in the 10% population tested monthly,7 (10.4%) tested positive for atrazine at least once during theyear, and 3 (4%) were positive each of the 12 months. Theaverage concentration in the 7 wells was 0.10 µg/L. Fornitrate, 15 (22%) wells in the 10% repeat population monthlysampling were above the Maximum Contaminant Level of 10 mg/L at least once. This paper, the second of two papers on thisstudy, describes the analysis of data from the survey. The firstpaper (Lorber et al., 1997) reviews the study design, theanalytical methodologies, and development of the data base.  相似文献   
4.
The inputs of atrazine and alachlor herbicides to surface and ground waters from irrigated areas dedicated to corn cultivation in the Castilla-León (C-L) region (Spain) as related to the application of both herbicides were studied. Enzyme-linked immunosorbent assays (ELISA) were used for monitoring the atrazine and alachlor concentrations in 98 water samples taken from these areas. Seventy-nine of the samples were of ground waters and 19 were of surface waters. The concentration ranges of the herbicides detected in the study period (October 1997–October 1998) were 0.04–25.3 g L–1 in the surface waters and 0.04–3.45 g L–1 in the ground waters for atrazine, and 0.06–31.9 g L–1 in the surface waters and 0.05–4.85 g L–1 in the ground waters in the case of alachlor. The highly significant correlation observed between the concentrations of both herbicides in the surface waters (r = 0.89, p < 0.001) pointed to a parallel transport of atrazine and alachlor to these waters. A study was made of the temporal evolution of the concentrations of both herbicides, and it was found a maximum recharge of atrazine in the ground waters for April 1998 and of alachlor in October 1997 and October 1998. The temporal evolution of the concentrations of both herbicides in surface waters was parallel. The highly significant correlations observed between atrazine concentrations determined by ELISA and by HPLC (r = 0.92, p < 0.001) and between alachlor concentrations also determined by both methods (r = 0.96, p < 0.001) confirmed the usefulness of ELISA for monitoring both herbicides in an elevated number of samples. Using HPLC, the presence in some waters of the alachlor ethanesulfonate (ESA) metabolite was found at a concentration range of 0.52–4.01 g L–1. However the interference of ESA in the determination of alachlor by ELISA was negligible. The inputs of atrazine and alachlor to waters found in this study, especially the inputs to ground waters, could pose a risk for human health considering that some waters, though sporadically, are even used for human consumption.  相似文献   
5.
IntroductionContaminationofediblevegetationbypersistent,ubiquitouschemicalssuchasPCBs,dioxins,pesticides,andherbicidesprovidesamajorexposureroutetohumans ,domesticanimalsandwildlife .Uptakeoftheseorganicchemicalsbyplant,andsubsequentdistributionintheplan…  相似文献   
6.
IntroductionApplication of organic amendments, such as sewagesludge to agricultural soils, has been considered as aneffective way to improve the soil physico chemical propertiesand organic matter compositions. Dissolved organic matter(D…  相似文献   
7.
ABSTRACT: Atrazine and atrazine-residue (atrazine + two metabolites - deethylatrazine and deisopropylatrazine) concentrations were examined to determine if consideration of these atrazine metabolites substantially adds to our understanding of the distribution of this pesticide in groundwater of the midcontinental United States. The mean of atrazine.residue concentrations was 53 percent greater than that of atrazine alone for those observations above the detection limit (> 0.05 μg/l). Furthermore, a censored regression analysis using atrazine-residue concentrations revealed significant factors not identified when only atrazine concentrations were used. Thus, knowledge of concentrations of these atrazine metabolites is required to obtain a true estimation of risk of using these aquifers as sources for drinking water, and such knowledge also provides information that ultimately may be important for future management policies designed to reduce atrazine concentrations in ground water.  相似文献   
8.
摘要:文章采用实验室内部的非标准方法《底泥中阿特拉津残留量的液相色谱测定方法》测定底泥中的阿特拉津残留量。通过对影响测定结果的不确定度分量的分析和量化,求出被测量的标准不确定度,给出各分量对测定结果不确定度的相对贡献,对测定结果进行了表述。对实际河道底泥样品中的阿特拉津残留量进行了测定,得到阿特拉津农药残留量的拓展不确定度为0.23ug/g,k=2。  相似文献   
9.
文章采用液液萃取-高效液相色谱法,通过统计全国多家实验室的测定数据,对水中阿特拉津测试的精密度和准确度两大类共5个质控指标及其评价标准进行了研究,提出在概率P和γ均为0.90时,平行样、空白加标回收率平行样和样品加标回收率平行样最大相对偏差应分别控制在7.5%、10.5%和9.7%;空白加标浓度为0.1~20μg/L时,回收率应控制在59%~118%;样品测定浓度为未检出、加标浓度在0.2~20μg/L时,实际样品加标回收率应控制在73%~106%。  相似文献   
10.
苏郡  朱鲁生  李絮花  王军  谢慧  王金花  王琪  贾文涛 《环境科学》2010,31(10):2475-2480
以莠去津降解细菌HB-5为研究对象,进行了氮、磷肥单一及复合施肥对HB-5细菌降解土壤中莠去津的促进作用的研究,探讨了莠去津降解率与土壤中速效氮、速效磷含量之间的关系及莠去津降解过程中生态毒性的变化情况.莠去津在土壤中的残留采用高效液相色谱法进行测定;土壤中速效氮和速效磷分别采用碱解扩散法及0.5mol/L-NaHCO3浸提-钼锑抗比色法测定;土壤的生态毒性采用蚕豆根尖微核法进行测定.结果表明,在实验的前5d,不论氮、磷肥单一或复合施肥均能够明显促进HB-5对莠去津的降解,不同施肥条件下莠去津的降解速率依次为:氮、磷肥复合单施磷肥单施氮肥不施肥料对照;实验5d后,各处理中莠去津降解率没有显著差异(p0.05),均达到了95%以上.土壤中速效氮和速效磷含量随着莠去津的降解而呈现逐渐减少的趋势.土壤的生态毒性试验结果表明,莠去津经HB-5菌株降解后,土壤的生态毒性显著降低;各施肥处理土壤中莠去津的生态毒性均低于不施肥处理的土壤;实验的前5d,各处理土壤中生态毒性的大小依次为:氮、磷肥复合单施磷肥单施氮肥不施肥料对照.实验7d时,各处理土壤中莠去津的生态毒性均恢复到空白对照水平.氮磷肥料的施用不仅能促进HB-5菌株对土壤中莠去津的降解,而且能加速降低土壤的生态毒性,为莠去津污染土壤的快速修复提供了理论依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号