首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   20篇
基础理论   78篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   12篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
  2008年   2篇
排序方式: 共有78条查询结果,搜索用时 265 毫秒
1.
One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data‐deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data‐deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data‐deficient assessments. To develop this, we reviewed 2879 data‐deficient assessments in 6 animal groups and identified 8 main justifications for assigning data‐deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data‐deficient species slipping unnoticed toward extinction.  相似文献   
2.
One of the criteria used by the International Union for Conservation of Nature (IUCN) to assess threat status is the rate of decline in abundance over 3 generations or 10 years, whichever is longer. The traditional method for calculating generation length (T) uses age‐specific survival and fecundity, but these data are rarely available. Consequently, proxies that require less information are often used, which introduces potential biases. The IUCN recommends 2 proxies based on adult mortality rate, = α + 1/d, and reproductive life span, = α + z*RL, where α is age at first reproduction, d is adult mortality rate, RL is reproductive life span, and z is a coefficient derived from data for comparable species. We used published life tables for 78 animal and plant populations to evaluate precision and bias of these proxies by comparing and with true generation length. Mean error rates in estimating T were 31% for and 20% for , but error rates for were 16% when we subtracted 1 year ( ), as suggested by theory; also provided largely unbiased estimates regardless of the true generation length. Performance of depends on compilation of detailed data for comparable species, but our results suggest taxonomy is not a reliable indicator of comparability. All 3 proxies depend heavily on a reliable estimate of age at first reproduction, as we illustrated with 2 test species. The relatively large mean errors for all proxies emphasized the importance of collecting the detailed life‐history information necessary to calculate true generation length. Unfortunately, publication of such data is less common than it was decades ago. We identified generic patterns of age‐specific change in vital rates that can be used to predict expected patterns of bias from applying .  相似文献   
3.
Accurate trend estimates are necessary for understanding which species are declining and which are most in need of conservation action. Imperfect species detection may result in unreliable trend estimates because this may lead to the overestimation of declines. Because many management decisions are based on population trend estimates, such biases could have severe consequences for conservation policy. We used an occupancy‐modeling framework to estimate detectability and calculate nationwide population trends for 14 Swiss amphibian species both accounting for and ignoring imperfect detection. Through the application of International Union for Conservation of Nature Red List criteria to the different trend estimates, we assessed whether ignoring imperfect detection could affect conservation policy. Imperfect detection occurred for all species and detection varied substantially among species, which led to the overestimation of population declines when detectability was ignored. Consequently, accounting for imperfect detection lowered the red‐list risk category for 5 of the 14 species assessed. We demonstrate that failing to consider species detectability can have serious consequences for species management and that occupancy modeling provides a flexible framework to account for observation bias and improve assessments of conservation status. A problem inherent to most historical records is that they contain presence‐only data from which only relative declines can be estimated. A move toward the routine recording of nonobservation and absence data is essential if conservation practitioners are to move beyond this toward accurate population trend estimation.  相似文献   
4.
Poaching can disrupt wildlife‐management efforts in community‐based natural resource management systems. Monitoring, estimating, and acquiring data on poaching is difficult. We used local‐stakeholder knowledge and poaching records to rank and map the risk of poaching incidents in 2 areas where natural resources are managed by community members in Caprivi, Namibia. We mapped local stakeholder perceptions of the risk of poaching, risk of wildlife damage to livelihoods, and wildlife distribution and compared these maps with spatially explicit records of poaching events. Recorded poaching events and stakeholder perceptions of where poaching occurred were not spatially correlated. However, the locations of documented poaching events were spatially correlated with areas that stakeholders perceived wildlife as a threat to their livelihoods. This result suggests poaching occurred in response to wildlife damage occurred. Local stakeholders thought that wildlife populations were at high risk of being poached and that poaching occurred where there was abundant wildlife. These findings suggest stakeholders were concerned about wildlife resources in their community and indicate a need for integrated and continued monitoring of poaching activities and further interventions at the wildlife‐agricultural interface. Involving stakeholders in the assessment of poaching risks promotes their participation in local conservation efforts, a central tenet of community‐based management. We considered stakeholders poaching informants, rather than suspects, and our technique was spatially explicit. Different strategies to reduce poaching are likely needed in different areas. For example, interventions that reduce human‐wildlife conflict may be required in residential areas, and increased and targeted patrolling may be required in more remote areas. Stakeholder‐generated maps of human‐wildlife interactions may be a valuable enforcement and intervention support tool. Riesgos de Cacería Furtiva en el Manejo de Recursos Naturales Basado en Comunidades  相似文献   
5.
Previous studies show that conservation actions have prevented extinctions, recovered populations, and reduced declining trends in global biodiversity. However, all studies to date have substantially underestimated the difference conservation action makes because they failed to account fully for what would have happened in the absence thereof. We undertook a scenario‐based thought experiment to better quantify the effect conservation actions have had on the extinction risk of the world's 235 recognized ungulate species. We did so by comparing species’ observed conservation status in 2008 with their estimated status under counterfactual scenarios in which conservation efforts ceased in 1996. We estimated that without conservation at least 148 species would have deteriorated by one International Union for Conservation of Nature (IUCN) Red List category, including 6 species that now would be listed as extinct or extinct in the wild. The overall decline in the conservation status of ungulates would have been nearly 8 times worse than observed. This trend would have been greater still if not for conservation on private lands. While some species have benefited from highly targeted interventions, such as reintroduction, most benefited collaterally from conservation such as habitat protection. We found that the difference conservation action makes to the conservation status of the world's ungulate species is likely to be higher than previously estimated. Increased, and sustained, investment could help achieve further improvements.  相似文献   
6.
Abstract: Unintended effects of recreational activities in protected areas are of growing concern. We used an adaptive‐management framework to develop guidelines for optimally managing hiking activities to maintain desired levels of territory occupancy and reproductive success of Golden Eagles (Aquila chrysaetos) in Denali National Park (Alaska, U.S.A.). The management decision was to restrict human access (hikers) to particular nesting territories to reduce disturbance. The management objective was to minimize restrictions on hikers while maintaining reproductive performance of eagles above some specified level. We based our decision analysis on predictive models of site occupancy of eagles developed using a combination of expert opinion and data collected from 93 eagle territories over 20 years. The best predictive model showed that restricting human access to eagle territories had little effect on occupancy dynamics. However, when considering important sources of uncertainty in the models, including environmental stochasticity, imperfect detection of hares on which eagles prey, and model uncertainty, restricting access of territories to hikers improved eagle reproduction substantially. An adaptive management framework such as ours may help reduce uncertainty of the effects of hiking activities on Golden Eagles.  相似文献   
7.
Marine spatial planning provides a comprehensive framework for managing multiple uses of the marine environment and has the potential to minimize environmental impacts and reduce conflicts among users. Spatially explicit assessments of the risks to key marine species from human activities are a requirement of marine spatial planning. We assessed the risk of ships striking humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (Balaenoptera physalus) whales in alternative shipping routes derived from patterns of shipping traffic off Southern California (U.S.A.). Specifically, we developed whale‐habitat models and assumed ship‐strike risk for the alternative shipping routes was proportional to the number of whales predicted by the models to occur within each route. This definition of risk assumes all ships travel within a single route. We also calculated risk assuming ships travel via multiple routes. We estimated the potential for conflict between shipping and other uses (military training and fishing) due to overlap with the routes. We also estimated the overlap between shipping routes and protected areas. The route with the lowest risk for humpback whales had the highest risk for fin whales and vice versa. Risk to both species may be ameliorated by creating a new route south of the northern Channel Islands and spreading traffic between this new route and the existing route in the Santa Barbara Channel. Creating a longer route may reduce the overlap between shipping and other uses by concentrating shipping traffic. Blue whales are distributed more evenly across our study area than humpback and fin whales; thus, risk could not be ameliorated by concentrating shipping traffic in any of the routes we considered. Reducing ship‐strike risk for blue whales may be necessary because our estimate of the potential number of strikes suggests that they are likely to exceed allowable levels of anthropogenic impacts established under U.S. laws. Evaluación del Riesgo de Colisiones de Barcos y Ballenas en la Planificación Marina Espacial  相似文献   
8.
We examined how ecological and evolutionary (eco‐evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco‐evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco‐evo PVA using individual‐based models with individual‐level genotype tracking and dynamic genotype–phenotype mapping to model emergent population‐level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco‐evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence.  相似文献   
9.
Natural‐resource managers and other conservation practitioners are under unprecedented pressure to categorize and quantify the vulnerability of natural systems based on assessment of the exposure, sensitivity, and adaptive capacity of species to climate change. Despite the urgent need for these assessments, neither the theoretical basis of adaptive capacity nor the practical issues underlying its quantification has been articulated in a manner that is directly applicable to natural‐resource management. Both are critical for researchers, managers, and other conservation practitioners to develop reliable strategies for assessing adaptive capacity. Drawing from principles of classical and contemporary research and examples from terrestrial, marine, plant, and animal systems, we examined broadly the theory behind the concept of adaptive capacity. We then considered how interdisciplinary, trait‐ and triage‐based approaches encompassing the oft‐overlooked interactions among components of adaptive capacity can be used to identify species and populations likely to have higher (or lower) adaptive capacity. We identified the challenges and value of such endeavors and argue for a concerted interdisciplinary research approach that combines ecology, ecological genetics, and eco‐physiology to reflect the interacting components of adaptive capacity. We aimed to provide a basis for constructive discussion between natural‐resource managers and researchers, discussions urgently needed to identify research directions that will deliver answers to real‐world questions facing resource managers, other conservation practitioners, and policy makers. Directing research to both seek general patterns and identify ways to facilitate adaptive capacity of key species and populations within species, will enable conservation ecologists and resource managers to maximize returns on research and management investment and arrive at novel and dynamic management and policy decisions.  相似文献   
10.
The Global Strategy for Plant Conservation (GSPC) set an ambitious target to achieve a conservation assessment for all known plant species by 2020. We consolidated digitally available plant conservation assessments and reconciled their scientific names and assessment status to predefined standards to provide a quantitative measure of progress toward this target. The 241,919 plant conservation assessments generated represent 111,824 accepted land plant species (vascular plants and bryophytes, not algae). At least 73,081 and up to 90,321 species have been assessed at the global scale, representing 21–26% of known plant species. Of these plant species, at least 27,148 and up to 32,542 are threatened. Eighty plant families, including some of the largest, such as Asteraceae, Orchidaceae, and Rubiaceae, are underassessed and should be the focus of assessment effort if the GSPC target is to be met by 2020. Our data set is accessible online (ThreatSearch) and is a baseline that can be used to directly support other GSPC targets and plant conservation action. Although around one‐quarter of a million plant assessments have been compiled, the majority of plants are still unassessed. The challenge now is to build on this progress and redouble efforts to document conservation status of unassessed plants to better inform conservation decisions and conserve the most threatened species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号