首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   5篇
  2012年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
2.
European scenarios for EUSES regional distribution model   总被引:2,自引:0,他引:2  
The regional multimedia distribution model incorporated into EUSES 1.0 is used for the estimation of regionally predicted environmental concentrations in different European scenarios: a scenario representing a typical region in the north of Europe (high fraction connected to sewer systems, lower environmental temperature, high fractions of surface water and natural soil and a low fraction for agricultural soil) and another scenario representing a typical region in the south of Europe (low fraction connected to sewer systems, higher environmental temperature, low fractions for surface water and natural soil, and a high fraction for agricultural soil). The two scenarios are based on average data of countries in Northern and Southern Europe, but are not realistic for any specific country located in these regions. Scenario calculations were carried out using these two scenarios in addition to the generic standard region, given in EUSES 1.0 as a default scenario, and the North-Rhine Westphalian region. The substance properties, including emissions, were left unchanged for all scenarios. For a number of substances, the calculated concentrations in both the North and the South of Europe turned out to be higher than those calculated with the standard generic scenario. Thus, the standard scenario cannot be considered as a 'worst case' scenario per se. Uncertainties due to the regional heterogeneity within Europe are high. It is recommended to use these two additional scenarios for an improved estimation of possible concentration ranges in Europe.  相似文献   
3.
The interdependencies of parameters applied in the models of EUSES are visualised in a directed connectivity graph. The parameters (inputs, defaults, state variables, outputs) are represented by boxes (nodes) and their relations by lines (edges). The visualisation, on the one hand, clarifies the complexity of the models in EUSES and, on the other hand, creates an overview and transparency. The parameters’ relations to each other can be recognised faster, and the models can be better understood. The complexity was quantified by the number (variety), kind (substance parameter, physico-chemical parameter, concentration, other parameters), and depth (dimension) of the parameter and the number of relations (connectivity). The variety of EUSES (without the modelsSimple Treat andSimple Box whose interior structure is not documented and without the effect and risk characterisation) amounts to 466, the connectivity to 961, and the maximal dimension is 21.  相似文献   
4.
Regional PECs (Potential Environmental Concentrations) calculated with the software EUSES were compared with measured values using different emission and environmental distribution scenarios. The environmental data set recommended in EUSES (default data set) represents a generic standard region. In different scenarios the parameters of the generic region are replaced by concrete values, and estimated parameters (emissions, degradation rates and partition coefficients) are substituted by measured or investigated values. Deviations with regard to the measured values can be up to three orders of magnitude. Despite the basically conservative approximations, underestimations can occur. However, these are usually due to poor monitoring data or inappropriate input values. The use of regional data instead of default parameters only slightly ameliorates the results. The use of real emission and degradation rates alone can improve the results significantly.  相似文献   
5.
The European regulation on chemicals, REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals), came into force on 1 June 2007. With pre-registration complete in 2008, data for these substances may provide an overview of the expected chemical space and its characteristics. In this paper, using various in silico computation tools, we evaluate 48 782 neutral organic compounds from the list to identify hazardous and safe compounds. Two different classification schemes (modified Verhaar and ECOSAR) identified between 17% and 25% of the compounds as expressing only baseline toxicity (narcosis). A smaller portion could be identified as reactive (19%) or specifically acting (2.7%), while the majority were non-assigned (61%). Overall environmental persistence, bioaccumulation and long-range transport potential were evaluated using structure-activity relationships and a multimedia fugacity-based model. A surprisingly high proportion of compounds (20%), mainly aromatic and halogenated, had a very high estimated persistence (>195 d). The proportion of compounds with a very high estimated bioconcentration or bioaccumulation factor (>5000) was substantially less (6.9%). Finally, a list was compiled of those compounds within the applicability domain of the models used, meeting both persistence and bioaccumulation criteria, and with a long-range transport potential comparable to PCB. This list of 68 potential persistent organic pollutants contained many well-known compounds (all halogenated), but notably also five fluorinated compounds that were not included in the EINECS inventory. This study demonstrates the usability of in silico tools for identification of potentially environmentally hazardous chemicals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号