首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   3篇
环保管理   1篇
综合类   5篇
基础理论   2篇
污染及防治   2篇
评价与监测   1篇
  2018年   1篇
  2015年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  1999年   1篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The potential for storing additional C in U.S. Corn Belt soils - to offset rising atmospheric [CO2] - is large. Long-term cultivation has depleted substantial soil organic matter (SOM) stocks that once existed in the region's native ecosystems. In central Illinois, free-air CO2 enrichment technology was used to investigate the effects of elevated [CO2] on SOM pools in a conservation tilled corn-soybean rotation. After 5 and 6 y of CO2 enrichment, we investigated the distribution of C and N among soil fractions with varying ability to protect SOM from rapid decomposition. None of the isolated C or N pools, or bulk-soil C or N, was affected by CO2 treatment. However, the site has lost soil C and N, largely from unprotected pools, regardless of CO2 treatment since the experiment began. These findings suggest management practices have affected soil C and N stocks and dynamics more than the increased inputs from CO2-stimulated photosynthesis.  相似文献   
2.
The nitrogen balance can serve as an indicator of the risk to the environment of nitrogen loss from agricultural land. To investigate the temporal and spatial changes in agricultural nitrogen application and its potential threat to the environment of the Haihe Basin in China, we used a database of county-level agricultural statistics to calculate agricultural nitrogen input, output, surplus intensity, and use efficiency. Chemical fertilizer nitrogen input increased by 51.7% from 1990 to 2000 and by 37.2% from 2000 to 2010, concomitant with increasing crop yields. Simultaneously, the nitrogen surplus intensity increased by 53.5% from 1990 to 2000 and by 16.5% from 2000 to 2010, presenting a continuously increased environmental risk. Nitrogen use efficiency decreased from 0.46 in 1990 to 0.42 in 2000 and remained constant at 0.42 in 2010, partly due to fertilizer composition and type improvement. This level indicates that more than half of nitrogen inputs are lost in agroecosystems. Our results suggest that although the improvement in fertilizer composition and types has partially offset the decrease in nitrogen use efficiency, the environmental risk has still increased gradually over the past 20 years, along with the increase in crop yields and nitrogen application. It is important to achieve a better nitrogen balance through more effective management to significantly reduce the environmental risk, decrease nitrogen surplus intensity, and increase nitrogen use efficiency without sacrificing crop yields.  相似文献   
3.
Cannibalistic tendencies are well known in spiders and may be a significant factor influencing population size. The wolf spider, Pardosa agrestis, is the dominant non-web-building spider in a wide range of central European agricultural habitats. Preliminary field observations indicated an extended reproductive period, which results in a very wide size distribution of juvenile instars. We hypothesised that if cannibalism is enhanced by differences in size, especially during periods when prey is scarce, these populations might be susceptible to cannibalism in an ecologically significant way. Laboratory studies were conducted on juvenile P. agrestis in arenas. We analysed the following specific aspects of cannibalism: (1) the effect of the weight ratio between the opponents; (2) the effect of weight per se, and (3) the role of hunger level in determining cannibalistic tendencies of spiders. The role of weight and hunger were analysed in separate experiments, in both cases by controlling for the other variable. The results showed that cannibalism was strongly positively correlated with both weight ratio and hunger, but absolute size/age of an individual could not predict the occurrence of a cannibalistic event. These experiments generated the plausible hypothesis that cannibalism might be an important phenomenon in the regulation of real populations, which should be tested specifically in future field experiments. Received: 15 December 1997 / Accepted after revision: 10 October 1998  相似文献   
4.
Organic matter plays several important roles in the biogeochemistry of terrestrial and aquatic ecosystems including the mobilization and transport of nutrients and pollutants. Cropping, tillage practices and vegetative buffer strip installation affect losses of dissolved organic carbon (DOC). While many studies show reductions in pollutant export from agroecosystems where vegetative buffers have been implemented, buffer strips may be a source of DOC and contribute to surface water pollution. Using a paired-watershed approach, the objectives of this study were to determine the effect of grass and agroforestry buffers on runoff and DOC loss, compare runoff and DOC losses between the growing and fallow seasons, and investigate crop effects on runoff and DOC losses. The study design consisted of three small agricultural Watersheds in a no-till, maize-soybean rotation located in the claypan region of northeast Missouri, USA; one watershed was planted with grass buffer strips, one with agroforestry buffer strips, and one unaltered watershed served as the control. Runoff and DOC loss were measured during a six-year calibration period (1991–1997) prior to buffer installation and for a nine-year treatment period (1997–2006). The grass buffer strips significantly decreased runoff by 8.4% (p = 0.015) during the treatment period while the agroforestry buffer system exhibited no significant change in runoff (p = 0.207). Loss of DOC was not significantly affected by grass or agroforestry buffer installation (p = 0.535 and p = 0.246, respectively). Additionally, no significant difference in runoff or DOC loss was found between crops (maize and soybean) or between seasons (growing and fallow). Overall, this study indicates that grass buffer systems are effective at reducing runoff and that DOC contamination of surface waters is not exacerbated by either type of vegetative buffer strip.  相似文献   
5.
By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands.  相似文献   
6.
重庆农业生态系统中酸雨因子的特点及其影响   总被引:2,自引:0,他引:2  
采用野外采样和室内分析,试验结果表明,酸雨对重庆区域农业生态系统影响不明显,菜地土壤有一定酸化趋势.农田大气中酸雨的主要因子SO2、NOx具有显著正相关,协同作用明显,但分布无明显规律性.农田灌溉水呈中性至微碱性,江水碱性明显.中性的灌溉水对土壤酸化有正面作用,碱性的灌溉水能阻止土壤酸化.不同种植类型土壤酸碱度差异明显,茶叶土壤为酸性,水果土壤则以碱性为主,因此可根据不同作物对土壤酸碱的喜好,调整种植品种和区域.  相似文献   
7.
The nitrogen balance can serve as an indicator of the risk to the environment of nitrogen loss from agricultural land. To investigate the temporal and spatial changes in agricultural nitrogen application and its potential threat to the environment of the Haihe Basin in China, we used a database of county-level agricultural statistics to calculate agricultural nitrogen input, output,surplus intensity, and use efficiency. Chemical fertilizer nitrogen input increased by 51.7% from1990 to 2000 and by 37.2% from 2000 to 2010, concomitant with increasing crop yields.Simultaneously, the nitrogen surplus intensity increased by 53.5% from 1990 to 2000 and by16.5% from 2000 to 2010, presenting a continuously increased environmental risk. Nitrogen use efficiency decreased from 0.46 in 1990 to 0.42 in 2000 and remained constant at 0.42 in 2010,partly due to fertilizer composition and type improvement. This level indicates that more than half of nitrogen inputs are lost in agroecosystems. Our results suggest that although the improvement in fertilizer composition and types has partially offset the decrease in nitrogen use efficiency, the environmental risk has still increased gradually over the past 20 years, along with the increase in crop yields and nitrogen application. It is important to achieve a better nitrogen balance through more effective management to significantly reduce the environmental risk,decrease nitrogen surplus intensity, and increase nitrogen use efficiency without sacrificing crop yields.  相似文献   
8.
The present article, based on a study of five village ecosystems, assesses the energy efficiency of rain-fed agriculture in a dry tropical environment and the impact of agricultural activity on the surrounding natural ecosystems. Agronomic yield is insufficient to meet the food requirement of the human population, hence 11.5%–49.7% of the required amount of food grains are imported from the market. Energy requirements of five studied agroecosystems are subsidized considerably by the surrounding forest in the form of fodder and firewood. Natural ecosystems supply about 80%–95% of fodder needs and 81%–100% of fuelwood needs. The output-input ratio of agriculture indicated that, on average, 4.1 units of energy are expended to obtain one unit of agronomic energy. Of this, 3.9 units are supplied by the natural ecosystem. In addition, 38% of the extracted firewood is marketed. The illegal felling and lopping of trees result in ever-increasing concentric circles of forest destruction around the villages and together with excessive grazing results in savannization. The forests can be conserved by encouraging fuelwood plantations (0.7 ha/ha cultivated land) and developing village pastures (1.6 ha/ha cultivated land) and reducing the livestock numbers. Agricultural production in the region can be stabilized by introducing improved dry farming techniques such as intercropping, planned rainwater management, and adequate use of fertilizers.  相似文献   
9.
10.
The research was based on a comparative study of three representative rural areas (Dovras, Larissa, and Messapia) in Greece. Remote sensing data were collected (maps, aerial photographs) for the landscape analysis and elaborated using GIS linked with economic and social parameters regarding land use. By using a selected core set of landscape indicators, this research aims at providing a useful tool for assessing agroecosystem management at territorial level and hopefully assist decision-making for the promotion of sustainability. The selected tool showed that the study area of Messapia presented the highest level of environmental sustainability, while the area of Dovras showed the best combination of agricultural productivity and landscape management. Results showed that the ecoregions of Dovras, Larissa, and Messapia presented a landscape composed of important ecological function areas in the percentages of 40%, 15%, and 70%, respectively, and of cultivated areas in the percentages of 55%, 71.19%, and 19.75%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号