首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  国内免费   20篇
安全科学   5篇
环保管理   3篇
综合类   36篇
污染及防治   14篇
评价与监测   3篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   8篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
排序方式: 共有61条查询结果,搜索用时 265 毫秒
1.
掺杂改性纳米二氧化钛粒子光催化降解甲苯的研究   总被引:1,自引:0,他引:1  
通过共沉淀法制备了掺铁纳米TiO2粒子,并用掺铁后的纳米TiO2粒子作为催化剂,对气相甲苯进行光催化降解实验。利用色谱、质谱、红外等测试方法研究了掺铁浓度对TiO2光催化性能的影响,同时探讨了光催化降解甲苯的机理。  相似文献   
2.
二氧化钛涂覆材料对甲苯的光催化降解作用   总被引:5,自引:0,他引:5  
张彭义  李昭  田地 《上海环境科学》2002,21(12):709-711
在自制的模拟小室中对二氧化钛涂覆材料的光催化性能进行了初步研究,在玻璃、瓷砖和日光灯这3种常见材料表面涂覆了二氧化钛,并以甲苯为模型化合物,测试了3种材料的净化性能。结果表明,3者对甲苯均有一定的降解效果,是有实用前景的光催化净化材料。  相似文献   
3.
The cryptomelane-type manganese oxide (OMS-2)-supported Co (xCo/OMS-2; x = 5, 10, and 15 wt.%) catalysts were prepared via a pre-incorporation route. The as-prepared materials were used as catalysts for catalytic oxidation of toluene (2000 ppmV). Physical and chemical properties of the catalysts were measured using the X-ray diffraction (XRD), Fourier transform infrared spectroscopic (FT-IR), scanning electron microscopic (SEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature-programmed reduction (H2-TPR) techniques. Among all of the catalysts, 10Co/OMS-2 performed the best, with the T90%, specific reaction rate at 245°C, and turnover frequency at 245°C (TOFCo) being 245°C, 1.23 × 10−3 moltoluene/(gcat·sec), and 11.58 × 10−3 sec−1 for toluene oxidation at a space velocity of 60,000 mL/(g·hr), respectively. The excellent catalytic performance of 10Co/OMS-2 were due to more oxygen vacancies, enhanced redox ability and oxygen mobility, and strong synergistic effect between Co species and OMS-2 support. Moreover, in the presence of poisoning gases CO2, SO2 or NH3, the activity of 10Co/OMS-2 decreased for the carbonate, sulfate and ammonia species covered the active sites and oxygen vacancies, respectively. After the activation treatment, the catalytic activity was partly recovered. The good low-temperature reducibility of 10Co/OMS-2 could also facilitate the redox process accompanied by the consecutive electron transfer between the adsorbed O2 and the cobalt or manganese ions. In the oxidation process of toluene, the benzoic and aldehydic intermediates were first generated, which were further oxidized to the benzoate intermediate that were eventually converted into H2O and CO2.  相似文献   
4.
脉冲电晕放电治疗有机废气的研究—放电反应器结构   总被引:9,自引:0,他引:9  
对脉冲电晕法治理甲苯有机废气进行了实验,考察了放电反应器结构及参数对其性能的影响。结果表明,对线-筒式反应器,当直径较小时,去除率较高,但易发生火花放电,实验条件下直径20mm的反应器效果较好。若采用陶瓷管反应器,其效果较金属管明显提高,脉冲峰值电压Vp为42kV时,可使甲苯的去除率由40%提高到61%左右。对线-板式反应器,放电间隙越大,甲苯的去除率越低,使用陶瓷板反应器可使甲苯去除率明显提高,  相似文献   
5.
生物法处理低浓度有机废气的填料选择研究   总被引:14,自引:0,他引:14  
采用不锈钢环、瓷环、陶粒、塑料环、海藻石、轻质陶块、煤渣等作为填料的试验研究,结果表明七种填料的净化性能顺序为:海藻石>轻质陶块>陶粒>瓷环>不锈钢环>煤渣>塑料环。  相似文献   
6.
Various abiotic and biotic processes such as sorption, dilution, and degradation are known to affect the fate of organic contaminants, such as petroleum hydrocarbons in saturated porous media. Reactive transport modeling of such plumes indicates that the biodegradation of organic pollutants is, in many cases, controlled by mixing and therefore occurs locally at the plume's fringes, where electron donors and electron-acceptors mix. Herein, we aim to test whether this hypothesis can be verified by experimental results obtained from aerobic and anaerobic degradation experiments in two-dimensional sediment microcosms. Toluene was selected as a model compound for oxidizable contaminants. The two-dimensional microcosm was filled with quartz sand and operated under controlled flow conditions simulating a contaminant plume in otherwise uncontaminated groundwater. Aerobic degradation of toluene by Pseudomonas putida mt-2 reduced a continuous 8.7 mg L(-1) toluene concentration by 35% over a transport distance of 78 cm in 15.5 h. In comparison, under similar conditions Aromatoleum aromaticum strain EbN1 degraded 98% of the toluene infiltrated using nitrate (68.5+/-6.2 mg L(-1)) as electron acceptor. A major part of the biodegradation activity was located at the plume fringes and the slope of the electron-acceptor gradient was steeper during periods of active biodegradation. The distribution of toluene and the significant overlap of nitrate at the plume's fringe indicate that biokinetic and/or microscale transport processes may constitute additional limiting factors. Experimental data is corroborated with results from a reactive transport model using double Monod kinetics. The outcome of the study shows that in order to simulate degradation in contaminant plumes, detailed data sets are required to test the applicability of models. These will have to deal with the incorporation of existing parameters coding for substrate conversion kinetics and microbial growth.  相似文献   
7.
Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.  相似文献   
8.
We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g mL−1 for TCE and 0.25 g mL−1 for benzene and toluene. The solubility limit increased from 21 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE (trichloroethylene) was most heavily impacted by biomass levels, changing by two orders of magnitude as the microbial concentrations approach those in biofilms.  相似文献   
9.
Cu–Mn, Cu–Mn–Ce, and Cu–Ce mixed-oxide catalysts were prepared by a citric acid sol–gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu–Mn–Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu–Mn–Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu–Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu–Mn and Cu–Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species.  相似文献   
10.
In this work the variation in the elimination capacity of a biofilter as a function of the gas flow and toluene concentration was studied. A bioreactor 0.75 m high x 14.5 cm diameter was used, divided into three equal stages, using compost to support the microorganisms, and sea shells to control the pH. The biofiltration of toluene was evaluated for flows between 0.12 and 0.73 m(3)h(-1) in a concentration range of 1-3.2 gm(-3). It was observed that on increasing the toluene inlet load by 90% (from 37 to 70 gm(3)h(-1)), the conversion by the biofilter varied by only 5% (from 98% to 93%). The biofiltration system used achieved elimination capacities of up to 82 gm(-3)h(-1) for a toluene load of 100 gm(-3)h(-1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号