首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   9篇
  国内免费   19篇
废物处理   2篇
环保管理   125篇
综合类   56篇
基础理论   64篇
污染及防治   25篇
评价与监测   17篇
社会与环境   39篇
  2023年   6篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   17篇
  2008年   12篇
  2007年   14篇
  2006年   19篇
  2005年   10篇
  2004年   18篇
  2003年   13篇
  2002年   19篇
  2001年   25篇
  2000年   10篇
  1999年   11篇
  1998年   9篇
  1997年   9篇
  1996年   9篇
  1995年   10篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   8篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有328条查询结果,搜索用时 18 毫秒
1.
水生态系统在人类社会的发展过程中发挥着至关重要的作用,由于人类活动的干扰,水生态系统的健康状况受到严重威胁.因此,本研究在对滇池流域水生态系统状况深入调查研究的基础上,根据水质状态和生态特性,利用层次分析法构建以化学完整性和生物完整性为标准的滇池流域水生态系统健康评估指标体系,计算各样点健康评价指标,综合评价滇池流域水生态系统健康状态.结果表明:滇池全流域水生态系统整体健康状态处于中下水平,流域上游区域健康等级多为良好,流域中游区域健康等级多为一般,流域下游区域健康等级多为一般和极差;滇池湖体健康等级则多为一般和差,尤以滇池北部(草海)健康状况较差;滇池流域河流和水库的健康状态整体比滇池湖泊的健康状态好,河流和水库的健康状态差异性不显著;生物状况是滇池流域水生态系统健康状态较差的主要限制性因素.  相似文献   
2.
In view of the Brazilian Ten‐Year Energy Expansion Plan 2021, this article presents a discussion on environmental flow (e‐flow). The authors analyze the literature to show the evolution of publications concerning e‐flow releases from the perspective of ecosystems services preservation considering results from different case studies from throughout the world. Finally, two main recommendations are drawn regarding e‐flow are: (1) performing a holistic approach to e‐flow planning, including hydrological, hydraulic, water quality, habitat, and riparian zone considerations; and (2) installing in new structures adequate bottom outlets to allow a range of adjustable e‐flow from reservoir dams to reproduce natural flow variations.  相似文献   
3.
Establishing IUCN Red List Criteria for Threatened Ecosystems   总被引:1,自引:0,他引:1  
Abstract: The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012.  相似文献   
4.
Glazer AN  Likens GE 《Ambio》2012,41(7):657-669
Hyperarid, arid, and semi-arid lands represent over a third of the Earth’s land surface, and are home to over 38 % of the increasing world population. Freshwater is a limiting resource on these lands, and withdrawal of groundwater substantially exceeds recharge. Withdrawals of groundwater for expanding agricultural and domestic use severely limit water availability for groundwater dependent ecosystems. We examine here, with emphasis on quantitative data, case histories of groundwater withdrawals at widely differing scales, on three continents, that range from the impact of a few wells, to the outcomes of total appropriation of flow in a major river system. The case histories provide a glimpse of the immense challenge of replacing groundwater resources once they are severely depleted, and put into sharp focus the question whether the magnitude of the current and future human, economic, and environmental consequences and costs of present practices of groundwater exploitation are adequately recognized.  相似文献   
5.
Climate change adaptation is an important part of addressing climate warming. Inner Mongolia grassland is a sensitive and vulnerable area of climate and an important region for adaptation to climate change. New climate change adaptation approaches with nomadic culture characteristics should be exploded in the context of climate warming. In this paper, the different utilization pattern of grassland in different regions, the different modes of production and management and historical culture were analyzed first in Nenjiang–West Liaohe plain and Ke’erqin region, Inner Mongolia Plateau and Ordos Plateau. Then, nomadic culture on the grassland was discussed from the productivity to biodiversity, from local livestock variety to resource-used system. Finally, new approaches of climate change adaptation with inheriting the essence of nomadic culture were proposed, including protecting biodiversity and using resources reasonably, performing a practice of grazing suspension–rotational grazing system, fencing degenerated grassland to facilitate its growth, founding new farming and husbandry system on the grassland, and establishing an incentive mechanism favorable to grassland and ethical cultural protection.  相似文献   
6.
Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored.  相似文献   
7.
8.
Oxygen (O2), nitrate (NO3), dissolved inorganic carbon (DIC) or pCO2, and pH or total alkalinity (TA), are useful indices of marine chemical, physical and biological processes operating on varying time-scales. Although these properties are increasingly being monitored at high frequency, they have not been extensively used for studying ecosystem dynamics. We test whether we can estimate time-evolving biogeochemical rates (e.g. primary production, respiration, calcification and carbonate dissolution, and nitrification) from synthetic high frequency time-series of O2, NO3, DIC, pCO2, TA or pH. More specifically, a Kalman filter has been implemented in a very simplified biogeochemical model describing the dynamics of O2, NO3, DIC and TA and linking the concentration data to biogeochemical fluxes. Different sets of concentration data are assimilated and biogeochemical rates are estimated. The frequency of assimilation required to get acceptable results is investigated and is compared with the frequency of sampling in the field or in controlled experimental settings.Smoothing of the data to remove data noise before assimilation improves the estimation of the biogeochemical rates. The best estimated rates are obtained when assimilating O2, NO3 and TA although the assimilation of DIC instead of TA also gives satisfactory results. In case pH or pCO2 is assimilated rather than DIC or TA, the linearization of the (now nonlinear) observation equation introduces perturbations and the Kalman filter behaves suboptimal. We conclude that, given the resolution of data required, the tool has potential to estimate biogeochemical rates of the carbonate system under controlled settings.  相似文献   
9.
Background, aim, and scope  Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. Materials and methods  We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1. Results and discussion  Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. Conclusions  HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. Recommendations and perspectives  More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.  相似文献   
10.
Despite biological invasions being a worldwide phenomenon causing significant ecological, economic, and human welfare impacts, there is limited understanding regarding how environmental managers perceive the problem and subsequently manage alien species. Spanish environmental managers were surveyed using questionnaires to (1) analyze the extent to which they perceive plant invasions as a problem; (2) identify the status, occurrence, and impacts of noxious alien plant species; (3) assess current effort and expenditure targeting alien plant management; and, finally, (4) identify the criteria they use to set priorities for management. In comparison to other environmental concerns, plant invasions are perceived as only moderately problematic and mechanical control is the most valued and frequently used strategy to cope with plant invasions in Spain. Based on 70 questionnaires received, 193 species are considered noxious, 109 of which have been the subject of management activities. More than 90% of species are found in at least one protected area. According to respondents, the most frequently managed species are the most widespread across administrative regions and the ones perceived as causing the highest impacts. The perception of impact seems to be independent of their invasion status, since only half of the species identified as noxious are believed to be invasive in Spain, while 43% of species thought to only be casual aliens are causing a high impact. Records of management costs are poor and the few data indicate that the total actual expenditure amounted to 50,492,437 € in the last decade. The majority of respondents stated that management measures are insufficient to control alien plants due to limited economic resources, lack of public awareness and support, and an absence of coordination among different public administrations. Managers also expressed their concern about the fact that much scientific research is concerned with the ecology of alien plants rather than with specific cost-efficient strategies to manage alien species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号