首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
综合类   3篇
基础理论   1篇
污染及防治   1篇
  2022年   2篇
  2021年   1篇
  2017年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
以碱木素为原料热解制备碱木素基活性炭(LAC),在此基础上添加硝酸镍、硝酸锌等,用水热合成法成功制备出负载镍锌氧体的木质素基活性炭(NiZn-DO/LAC).通过SEM、BET、XRD等仪器对木质素基活性炭性能结构进行表征,并研究其在水溶液中对于磺胺噻唑(ST)的吸附.结果表明,所制得的木质素基活性炭具有明显的三维多孔结构与稳定的晶体结构,其具备较大的比表面积(759.1m2/g).在吸附ST的过程中,NiZn-DO/LAC表现出较好的吸附性能,最大吸附容量可达328.2mg/g,优于其他报道的吸附剂.在NaOH溶液中,ST易从活性炭材料中脱附,在循环利用4次后,解吸率仍可达79.43%.NiZn-DO/LAC对ST的吸附主要通过静电作用、π-π堆积作用、络合作用、氢键作用及疏水性作用的协同,从而使吸附性能得到很大提高.  相似文献   
2.
酸碱改性生物炭对水中磺胺噻唑的吸附性能研究   总被引:6,自引:1,他引:5  
以马铃薯茎叶为原料,采用限氧裂解法制备生物炭,通过H2SO4和KOH处理制备酸、碱改性生物炭.应用比表面积法(BET)、扫描电镜(SEM)和红外光谱(FTIR)研究了改性前后3种生物炭的结构与性质,并通过单因素实验研究了吸附时间、温度、磺胺噻唑初始浓度、p H值等因素对原始及酸碱改性3种生物炭吸附磺胺噻唑效果的影响,初步探讨了吸附机制.结果表明,3种生物炭对磺胺噻唑的吸附行为符合准二级动力学方程;酸改性生物炭对磺胺噻唑的吸附等温线符合Temkin模型,原炭和碱改性生物炭的吸附等温曲线符合Freundlich模型.酸改性极大的提高了生物炭对磺胺噻唑的吸附能力,最大吸附量为7.69 mg·g-1,是原炭吸附量的2.4倍;溶液p H对3种生物炭吸附磺胺噻唑影响不明显.热力学研究表明,酸改性生物炭对磺胺噻唑的吸附为自发的吸热反应.FTIR分析表明,酸改性生物炭表面有更多含氧官能团,为磺胺噻唑的吸附提供了吸附点.氢键、范德华力及偶极距力作用对生物炭吸附磺胺噻唑起到主要作用.  相似文献   
3.
磺胺嘧啶和磺胺噻唑在土壤中的吸附行为   总被引:16,自引:0,他引:16  
采用批平衡实验方法研究磺胺嘧啶(SDZ)和磺胺噻唑(STZ)在五种典型土壤及一种泥炭中的吸附行为.结果表明:(1)SDZ和STZ在土壤及泥炭中的吸附量随溶液pH值的升高而减小,与溶液中SDZ和STZ阳离子的含量呈正相关.(2)SDZ和STZ的吸附均可采用Freundlich和Langmuir模型进行拟合,最大吸附量(Qm)的大小依次为:泥炭土>黑土>棕壤≥灰褐土>红壤≥灰漠土.除红壤和灰漠土外,Freundlich吸附系数(K)的大小次序和(Qm)基本相同.SDZ和STZ的(Qm)与土壤有机质的含量和土壤粉粒的含量呈显著正相关.因此,SDZ和STZ更容易吸附在有机质的含量比较高的泥炭土和黑土中.  相似文献   
4.
权衡  牛琳  时迪  汪霞  梁为纲  赵晓丽 《环境科学研究》2022,35(12):2732-2747
近年来,基于纳米零价铁(nano zero-valent iron,nZVI)的非均相Fenton氧化技术成为了抗生素废水研究领域的热点,但是nZVI易迁移和易团聚的缺点限制了其进一步应用. 为了解决该问题,本文选择含氮有机物乙二胺四乙酸(EDTA)和三聚氰胺(MA)作为配体,含有机碳的醋酸亚铁作为铁源,采用机械球磨法-高温裂解相结合的方法制备了负载nZVI的铁碳材料,并以磺胺噻唑(sulfathiazole,STZ)为目标污染物,探讨了Fe@EDTA (醋酸亚铁@乙二胺四乙酸)和Fe@MA (醋酸亚铁@三聚氰胺)2种铁碳复合材料激发过氧化氢(H2O2)的非均相Fenton催化体系(Fe@C-H2O2体系)的影响因素及其作用机制. 结果表明:①Fe@EDTA材料中纳米铁粒子的直径约为4 nm,在碳层中均匀分布,这种结构使得其具有较强的催化能力,而Fe@MA材料中的nZVI则聚集成直径约为400 nm的大颗粒,被100 nm碳层包覆. ②Fe@EDTA材料的最佳铁碳比(醋酸亚铁与有机配体的质量比)为2∶1,Fe@MA材料的最佳铁碳比为3∶1,2种铁碳复合材料的最佳试验条件均为初始pH =3、H2O2投加量25 mmol/L、铁碳复合材料投加量0.2 g/L、STZ初始浓度20 mg/L. 在最优条件下,2种铁碳复合材料的Fe@C-H2O2体系均可在30 min内完全降解STZ. ③STZ的降解以及羟基自由基(?OH)的产生均符合伪一级动力学模型. ④连续运行300 min后,Fe@EDTA-H2O2体系对STZ的降解率仍高达82%,而Fe@MA-H2O2体系对STZ的降解率约为48%. ⑤基于?OH猝灭试验,推测铁碳复合材料与H2O2的非均相Fenton催化体系的机理是nZVI诱导的非均相Fenton氧化,其中?OH和超氧自由基(?O2?)在氧化降解有机污染物过程中起到关键作用. 研究显示,nZVI颗粒粒径更小的Fe@EDTA材料具有更加优异的催化性能以及更好的重复利用性和稳定性,能够高效降解水中的STZ.   相似文献   
5.
聚酰胺类微塑料(PA-MPs)和磺胺类抗生素(SAs)均为新兴污染物且已广泛检出,其中聚酰胺6微塑料由常用的聚酰胺6塑料产生,磺胺噻唑(ST)是典型的SAs.由于微塑料在环境暴露中普遍易老化,因此探究了聚酰胺6微塑料在未老化、紫外老化、紫外和H2 O2老化(分别记为PA6、PA6-UV、PA6-UV+H2 O2)下对S...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号