首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
安全科学   1篇
环保管理   3篇
综合类   1篇
基础理论   4篇
污染及防治   25篇
评价与监测   1篇
  2021年   1篇
  2016年   1篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   1篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1987年   1篇
排序方式: 共有35条查询结果,搜索用时 125 毫秒
1.
This study characterizes layer- and local-scale heterogeneities in hydraulic parameters (i.e., matrix permeability and porosity) and investigates the relative effect of layer- and local-scale heterogeneities on the uncertainty assessment of unsaturated flow and tracer transport in the unsaturated zone of Yucca Mountain, USA. The layer-scale heterogeneity is specific to hydrogeologic layers with layerwise properties, while the local-scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. A Monte Carlo method is used to estimate mean, variance, and 5th, and 95th percentiles for the quantities of interest (e.g., matrix saturation and normalized cumulative mass arrival). Model simulations of unsaturated flow are evaluated by comparing the simulated and observed matrix saturations. Local-scale heterogeneity is examined by comparing the results of this study with those of the previous study that only considers layer-scale heterogeneity. We find that local-scale heterogeneity significantly increases predictive uncertainty in the percolation fluxes and tracer plumes, whereas the mean predictions are only slightly affected by the local-scale heterogeneity. The mean travel time of the conservative and reactive tracers to the water table in the early stage increases significantly due to the local-scale heterogeneity, while the influence of local-scale heterogeneity on travel time gradually decreases over time. Layer-scale heterogeneity is more important than local-scale heterogeneity for simulating overall tracer travel time, suggesting that it would be more cost-effective to reduce the layer-scale parameter uncertainty in order to reduce predictive uncertainty in tracer transport.  相似文献   
2.
We review the basic mathematical concepts of random walk particle tracking (RWPT) and its advantages and limitations. Three different numerical approaches to overcome the local mass conservation problem of the random walk methodology are examined: (i) the interpolation method, (ii) the reflection principle, and (iii) the generalized stochastic differential equations (GSDE). Analytical solutions of the spatial moments for a two-layer system are compared to model predictions using the different techniques and results demonstrate that the interpolation method reproduces correctly average velocity, but fails to reproduce macrodispersion at higher hydraulic conductivity contrasts between the two layers. On the contrary, the reflection principle and the GSDE approach underestimate average velocity, but reproduce macrodispersion better for high contrasts. The different behavior is based on an artificial shift of mass for increasing heterogeneities for the GSDE approach and the reflection principle, whereas the interpolation method suffers from the smoothing of the dispersion tensor. The behavior of these approaches was furthermore analyzed in two-dimensional heterogeneous hydraulic conductivity fields, which are characterized by different random function models. Solute transport was simulated correctly by all three approaches for the reference fields having Gaussian structures or non-Gaussian structures with an isotropic spatial correlation, even for a variance of the natural log of hydraulic conductivity of sigma(lnK)(2)=4. However, for the non-Gaussian model with a strong anisotropic spatial correlation and a variance of sigma(lnK)(2)=2 and higher, the interpolation method was the only technique modelling solute transport correctly. Furthermore, we discuss the general applicability of random walk particle tracking in comparison to the standard transport models and conclude that in advection-dominated problems using a high spatial discretization or requiring the performance of many model runs, RWPT represents a good alternative for modelling contaminant transport.  相似文献   
3.
The systematic conservation planning literature invariably assumes that the biodiversity features being preserved in sites do not change through time. We develop a conservation planning framework for ecosystems where disturbance events and succession drive vegetation dynamics. The framework incorporates three key attributes of disturbance theory: heterogeneity in disturbance rates, spatial correlation between disturbance events and different impacts of disturbance. In our conservation problem we wish to maximise the chance that we represent a certain number of successional types given a cap on the number of sites we can conserve. Correlation between disturbance events dramatically complicates the problem of choosing the optimal suite of sites. However, in our problem we discover that spatial correlation in disturbances affects the optimal reserve network very little. The reason is twofold: (i) through our probabilistic framework we focus on the long-term effectiveness of reserve networks and (ii) in the dynamics considered in our model the state of a site is not only affected by the most recent (correlated) disturbance event but also by the site's long-term stochastic history which blurs the impact of spatial correlation. If successional states are the conservation target rather than individual species then, conserving a site can only contribute to meeting one target. However, given that correlation of disturbance events may be ignored, we show that if the number of candidate reserves is sufficiently large the statistical dependence of different conservation targets may be ignored, too. We conclude that the computational complexity of reserve selection methods for dynamic ecosystems can be much simpler than they first appear.  相似文献   
4.
This paper examines the importance of the correlation between hydraulic conductivity (K) and degradation rate constant (k) during the transport of reactive contaminants in heterogeneous aquifers. We simulated reactive transport in an ensemble of two-dimensional heterogeneous aquifers. Two sets of transport simulations were conducted: one in which a perfect positive correlation was assumed between ln(K) and ln(k), and one in which a perfect negative correlation was assumed. We found that the sign of the correlation has important consequences for the contaminant transport. Qualitatively, a negative correlation leads to significantly more pronounced "fingering" of the contaminant plume than does a positive correlation, with potentially important consequences for downgradient receptors. Quantitatively, the expected behavior (as quantified by the contaminant mass remaining in the aquifer) is statistically different between the positive and negative cases: on average, more contaminant mass persists when K and k are negatively correlated. Also, the negative correlation leads to more variability between realizations of the ensemble, whereas a positive correlation induces relatively little variability between realizations. We discuss the implications of these findings for the management of contaminated aquifers.  相似文献   
5.
Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-year study period, the Fe0 remained reactive as shown in pore-water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-year treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 years of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.  相似文献   
6.
In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.  相似文献   
7.
Walsh ME  Ramsey CA  Jenkins TF 《Chemosphere》2002,49(10):1267-1273
Efforts to characterize the surface soil contamination on military training ranges have been compromised by the inability to obtain representative subsamples of soils submitted to analytical laboratories for determination of explosives residues. Two factors affecting subsampling error for explosives residues were examined using soils collected from hand grenade and anti-tank ranges. These factors were increased subsample size and particle size reduction prior to subsampling of soils. Increasing the subsample size from 2 to 50 g did not reduce the soil subsampling error because of the extreme heterogeneous distribution of the solid contaminants. Alternatively, particle size reduction by machine grinding on a ring mill reduced subsampling error to less than 10% relative standard deviation for replicate analyses using 10-g subsamples.  相似文献   
8.
Performance assessment of NAPL remediation in heterogeneous alluvium   总被引:1,自引:0,他引:1  
Over the last few years, more than 40 partitioning interwell tracer tests (PITTs) have been conducted at many different sites to measure nonaqueous phase liquid (NAPL) saturations in the subsurface. While the main goal of these PITTs was to estimate the NAPL volume in the subsurface, some were specifically conducted to assess the performance of remedial actions involving NAPL removal. In this paper, we present a quantitative approach to assess the performance of remedial actions to recover NAPL that can be used to assess any NAPL removal technology. It combines the use of PITTs (to estimate the NAPL volume in the swept pore volume between injection and extraction wells of a test area) with the use of several cores to determine the vertical NAPL distribution in the subsurface. We illustrate the effectiveness of such an approach by assessing the performance of a surfactant/foam flood conducted at Hill Air Force Base, UT, to remove a TCE-rich NAPL from alluvium with permeability contrasts as high as one order of magnitude. In addition, we compare the NAPL volumes determined by the PITTs with volumes estimated through geostatistical interpolation of aquifer sediment core data collected with a vertical frequency of 5-10 cm and a lateral borehole spacing of 0.15 m. We demonstrate the use of several innovations including the explicit estimation of not only the errors associated with NAPL volumes and saturations derived from PITTs but also the heterogeneity of the aquifer sediments based upon permeability estimates. Most importantly, we demonstrate the reliability of the  相似文献   
9.
Introduction: Safety of horizontal curves on rural two-lane, two-way undivided roadways is not fully explored. This study investigates factors that impact injury severity of such crashes. Method: To achieve the aim of this paper, issues associated with police-reported crash data such as unobserved heterogeneity and temporal stability need to be accounted for. Hence, a mixed logit model was estimated, while heterogeneity in means and variances is investigated by considering four injury severity outcomes for drivers: severe injury, moderate injury, possible injury, and no injury. Crash data for the period between 2011 and 2016 for crashes that occurred in the state of Oregon was analyzed. Temporal stability in factors determining the injury severity was investigated by identifying three time periods through splitting crash data into 2011–2012, 2013–2014, and 2015–2016. Results: Despite some factors affecting injuries in all specified time periods, the values of the marginal effects showed relative differences. The estimation results revealed that some factors increased the risk of being involved in severe injury crashes, including head-on collisions, drunk drivers, failure to negotiate curves, older drivers, and exceeding the speed limits. Conclusions: The hypothesis that attributes of injury severity are temporally stable is rejected. For example, young drivers (30 years old and younger) and middle-aged drivers were found to be temporally instable over time. Practical applications: The findings could help transportation authorities and safety professionals to enhance the safety of horizontal curves through appropriate and effective countermeasures.  相似文献   
10.
A series of statistical analyses were used to identify temporal and spatial patterns in the phytoplankton and nutrient dynamics of Lake Washington, an mesotrophic lake in Washington State (USA). These analyses were based on fortnightly or monthly samples of water temperature, Secchi transparency, ammonium (NH4), nitrate (NO3), inorganic phosphorus (IP), total nitrogen (TN), total phosphorus (TP), dissolved oxygen (DO), pH and chlorophyll a (chl a) collected during 1995–2000 from 12 stations. Lake Washington has a very consistent and pronounced annual spring diatom bloom which occurs from March to May. During this bloom, epilimnetic chl a concentrations peak on average at 10 μg/L, which is 3 times higher than chl a concentrations typically seen during summer stratified conditions. The spring bloom on average comprised 62% diatoms, 21% chlorophytes and 8% cyanobacteria. During summer stratification, diatoms comprised 26% of the phytoplankton community, chlorophytes 37% and cyanobacteria 25%. Cryptophytes comprised approximately 8% of the community throughout the year. Overall, 6 phytoplankton genera (i.e., Aulacoseira, Fragilaria, Cryptomonas, Asterionella, Stephanodiscus, and Ankistrodesmus) cumulatively accounted for over 50% of the community. These analyses also suggest that the phytoplankton community strongly influences the seasonality of NO3, IP, DO, pH and water clarity. According to a MANOVA, seasonal fluctuations explained 40% of the total variability for the major parameters, spatial heterogeneity explained 10% of variability, and the seasonal-spatial interaction explained 10% of variability. Distinctive patterns were identified between offshore and inshore sampling stations. The results of our analyses also suggest that spatial variability was substantial, but much smaller than temporal variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号