首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   1篇
综合类   1篇
基础理论   1篇
污染及防治   5篇
评价与监测   1篇
  2013年   5篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
Photodegradation of parathion ethyl in presence of unsaturated biomolecules takes place by sufficient reduction of the phenyl nitro group. Main products are N,0‐dialkenyl hydroxylamino, cis/trans azo, and azoxy derivatives of parathion.  相似文献   
2.
Abstract

This laboratory study investigated the effectiveness of selected detergents and the phenomenon of simulated environmental conditions (weathering) on the removal of a commercial‐grade mixture of parathion and methyl parathion from a three‐layer laminated fabric. The weathering treatment consisted of exposure and non‐exposure to simulated environmental conditions of heat, light, and humidity. Contaminated fabric samples were laundered in one of three detergents containing an anionic, a nonionic, and a combined anionic and nonionic surfactant. The test fabric, a three‐layer fabric containing an impermeable microporous film laminated between two layers of nylon, was pipette‐contaminated with 400 microliters of field strength pesticide solution and allowed to dry. Half of the contaminated samples were weathered in an Atlas Fade‐Ometer. All of the contaminated samples were subsequently laundered in a Launder‐Ometer. Percent of pesticide residue was determined by gas chromatography. Weathering did significantly reduce both parathion and methyl parathion residues remaining in the test fabric. No statistically significant difference was found among the three detergents. High amounts of both parathion and methyl parathion remained in the test fabric after weathering and laundry treatments. Before the test fabric can be recommended for use in protective garments further research is needed to develop more effective decontamination procedures.  相似文献   
3.
Fan C  Tsui L  Liao MC 《Chemosphere》2011,82(2):229-236
The purpose of this study is to investigate parathion degradation by Fenton process in neutral environment. The initial parathion concentration for all the degradation experiments was 20 ppm. For hydrogen ion effect on Fenton degradation, the pH varied from 2 to 8 at the [H2O2] to [Fe2+] ratio of 2-2 mM, and the result showed pH 3 as the most effective environment for parathion degradation by Fenton process. Apparent degradation was also observed at pH 7. The subsequent analysis for parathion degradation was conducted at pH 7 because most environmental parathion exists in the neutral environment. Comparing the parathion degradation results at various Fenton dosages revealed that at Fe2+ concentrations of 0.5, 1.0 and 1.5 mM, the Fenton reagent ratio ([H2O2]/[Fe2+]) for best-removing performance were found as 4, 3, and 2, resulting in the removal efficiencies of 19%, 48% and 36%, respectively. Further increase in Fe2+ concentration did not cause any increase of the optimum Fenton reagent ratio for the best parathion removal. The result from LC-MS also indicated that hydroxyl radicals might attack the PS double bond, the single bonds connecting nitro-group, nitrophenol, or the single bond within ethyl groups of parathion molecules forming paraoxons, nitrophenols, nitrate/nitrite, thiophosphates, and other smaller molecules. Lastly, the parathion degradation by Fenton process at the presence of humic acids was investigated, and the results showed that the presence of 10 mg L−1 of humic acids in the aqueous solution enhanced the parathion removal by Fenton process twice as much as that without the presence of humic acids.  相似文献   
4.
Abstract

Residues of three pesticides (dimethoate, parathion, and pyrazophos) in two artichoke cultivars, Masedu and Spinoso sardo, were investigated. The amount of pesticides in artichokes was greatly affected by the head shape. In the case of the calix‐shaped Masedu artichoke, the residues in whole heads at commercial ripening were on average about twice higher than those of the pagoda‐shaped Spinoso sardo artichoke. In the heart this ratio was 4 to 42 times greater. Residue decay rates were very fast, mainly owing to the dilution effect due to head growth.  相似文献   
5.
采用序批式试验研究了3种粉末活性炭(PAC)对天然水体中甲基对硫磷(MP)和三氯乙烯(TCE)的吸附平衡特性,利用均相表面扩散模型(HSDM)对不同投炭量下的吸附动力学进行拟合与预测,并探讨了天然有机物(NOM)对MP、TCE在PAC上的竞争吸附效应.研究结果表明,天然水体条件下,3种PAC对MP和TCE的吸附符合Langmuir模型和Freundlich模型;MP比TCE更易于被PAC吸附;3种PAC对MP、TCE的吸附能力由大到小依次为YK炭、SL炭和JC炭;HSDM模型可以很好地对吸附动力学进行拟合,并能够有效地预测不同投炭量时的吸附动力学;天然水体中的NOM会与MP和TCE在PAC上发生竞争吸附,NOM对MP的竞争吸附作用相对TCE更为显著.  相似文献   
6.
Abstract

Genotoxicity of the insecticide methyl parathion was investigated in Salmonella typhimurium and Escherichia coli bacterial test systems for the detection of back mutations and DNA‐damage. Methyl parathion was mutagenic to S. typhimurium strain TA100 after activation with rat liver microsomal and cytosolic enzymes. In DNA repair tests, methyl parathion was effective in inducing damage to the S. typhimurium strain TA1538 which lack excision repair compared to the strain TA1978 which is proficient in excision repair mechanisms. Normal laboratory light conditions had no effect on the mutagenicity tests, however, exposure of methyl parathion in the petri dish containing the tester strain TA100 and rat liver microsomal and cytosolic enzymes reduced the mutagenic activity and increased the toxic effects of methyl parathion.  相似文献   
7.
Abstract

The effect of environmental parameters (temperature and relative humidity) on the degradation rate of azinphos methyl and parathion methyl was studied. Proprietary emulsifiable concentrates were diluted and added to each of 90 glass Petri dishes for each pesticide and were left overnight to dry. Petri dishes were placed in 18 air-tight containers (9 for each pesticide) in which were created environments with relative humidity (RH) of 60, 82, and 96%. The containers were stored at 0, 20, and 40°C. From the experimental results best fit curves, kinetic equations, rate constants, and half-lives were calculated. Half-lives of azinphos methyl for the RH studied were, from 124 to 267 days at 0°C, from 89 to 231 days at 20°C, and from 25 to 71 days at 40°C. Corresponding half-lives for parathion methyl were from 48 to 57 days at 0°C, from 9.2 to 10.5 days at 20°C and from 1.3 to 1.5 days at 40°C. The results were correlated with relevant results from the decomposition of the same or similar pesticides on apples both, on the trees and during refrigerated storage. These correlations are suggesting that biological factors strongly affected the decomposition rate of azinphos methyl. On the contrary the decomposition of parathion methyl was mainly affected by environmental rather than biological factors.  相似文献   
8.
确立了三氯甲烷中有机磷农药混合标准样品的制备、分析和定值方法,进行了标准样品的均匀性检验、稳定性监测及协作定值数据的不确定度评价。结果表明,三氯甲烷中有机磷农药混合标准样品的均匀性良好,至少在18个月的时间内稳定。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号