首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   8篇
  国内免费   12篇
安全科学   5篇
废物处理   8篇
环保管理   16篇
综合类   43篇
基础理论   24篇
污染及防治   57篇
评价与监测   13篇
社会与环境   4篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   3篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   14篇
  2012年   9篇
  2011年   15篇
  2010年   5篇
  2009年   19篇
  2008年   16篇
  2007年   9篇
  2006年   9篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
1.
For lack of an extinguishing agent with high-efficiency, non-toxic and environmentally friendly, a new type of extinguishing agent was fabricated to solve such an urgent problem. In this study, the zinc borate (ZB) and ferrocene (Fe(Cp)2) were utilized as two additives for extinguishants to suppress combustion reaction and the toxicity of the tail gas was detected. The mass fraction of ZB corresponding to the optimal inhibitory effect was determined to be 0.5–1.5%, by contrast, the optimum interval of Fe(Cp)2 was detected as 0.5–1.0%. Similarly, with the increasing proportion of the two additives, the homologous inhibitory action was gradually weakened. From the perspective of thermogravimetric analysis (TGA), it was indicated that the ZB accelerated the pyrolysis process of the extinguishant, making its thermal decomposition process more thoroughly. Meanwhile, the differential scanning calorimetry (DSC) demonstrated that the decomposition efficiency was markedly improved when the amount of ZB was maintained at 0.5–1.5%. Besides, the tail gas tests were implemented to assess the extent of toxic and harmful properties. In terms of the carbon monoxide (CO) and carbon dioxide (CO2) generated, once the mass fraction of ZB and Fe(Cp)2 was less than 1.5% and 1.0% respectively, the concentration of CO and CO2 was distinctly lower than that without additives. Moreover, the inhibitory ability on nitrogen oxides (NOx) was enhanced when the mass fraction of the two additives was kept below 1.0%. The results confirmed that a more practical extinguishant was proposed and it can provide guidance for the application and development of extinguishants.  相似文献   
2.
固定化细菌吸附铜、锌和镍最佳包埋条件的确定   总被引:2,自引:0,他引:2  
以聚乙烯醇和海藻酸钠为包埋剂,将细菌进行包埋固定后,以吸附铜、锌和镍的能力为考察指标,从机械强度、传质性和耐酸性等方面综合考虑确定了固定化小球最佳配方。按照此最佳配方进行吸附能力验证实验,结果发现,该固定化小球对铜、锌和镍的吸附量分别达到0.9025mg/g、0.8635mg/g和0.5317mg/g,且机械强度、传质性和耐酸性部较好。  相似文献   
3.
污染河流悬沙与铜、锌污染相关性研究   总被引:1,自引:1,他引:0  
通过对矿区选矿废水污染的河流水样和悬沙进行采样,分析悬沙、铜、锌质量浓度,探讨河流悬沙与铜、锌之间的相关关系,是有重要现实意义的.研究结果表明:河流水质铜超标严重,丧失了作为农业用水的使用功能.水中铜污染物量与悬沙量相关关系,锌污染物量与悬沙量相关关系都是极显著的.经过曲线回归方程拟合,锌污染物量与悬沙量之间的回归关系比铜污染物量与悬沙量之间的回归关系显著,有3个曲线方程较优,即:对数方程、二次多项式方程、三次多项式方程.据此,通过测定污染河流悬沙量可以粗略地估算水中锌污染物量.  相似文献   
4.
The removal of heavy metals from aqueous effluents so as to avoid their toxic, bioaccumulation and biomagnification effects to humans and environment is usually realized by means of physical, chemical treatment, and biological processes. The aim of this study is to evaluate the potential of rapeseed waste from biodiesel production as a biosorbent for Zn(II) ions.The ability of the rapeseed waste for Zn(II) biosorption exhibited a maximum at pH 4.5–5. The removal efficiency of Zn(II) from solution with an initial concentration of 72 mg L−1 varied from 39% to 89% for an increase of the rapeseed waste dose from 2 to 30 g L−1. The amount of Zn(II) retained on the tested rapeseed increased with increasing metal ion concentration, but the Zn(II) sorption percentage decreased. The equilibrium data are fitted to the Langmuir isotherm better than to the Freundlich isotherm. The kinetics of Zn(II) biosorption process follows a pseudo-second order model. The thermal stability of the rapeseed before and after Zn(II) biosorption was studied by thermogravimetric analysis. It was found that the zinc loaded rapeseed exhibits a better initial thermal stability than the original rapeseed, presumably due to the cross linking generated by the intermolecular complexation of Zn(II) ions. In both cases, the thermal decomposition takes place according to some reassembling kinetic models, in two phases with order n reactions. The results of this study strongly suggest the possibility to use rapeseed as an effective biosorbent for Zn(II) ions removal from aqueous effluents (municipal/industrial wastewaters).  相似文献   
5.
利用粉煤灰合成Linde type F(K)沸石吸附重金属Zn2+,考察吸附剂量、pH值、反应温度对Zn 2+吸附效果影响,研究沸石吸附Zn2+的等温线与动力学,得到了相应的模型。结果表明:吸附剂量、pH值、反应温度均对Zn2+去除效果影响显著。随着吸附剂量增大,Zn 2+去除效果不断提高,饱和吸附量逐渐减小。初始pH值为3~7时,沸石对Zn2+去除率随pH值升高迅速提高。反应温度越高,沸石吸附Zn2+到达平衡时间越短。沸石对Zn2+吸附过程符合Langmuir吸附等温式,其吸附为单分子层吸附;准二级反应动力学方程能很好描述沸石对Zn2+的吸附行为。  相似文献   
6.
The present study highlights the potential application of zinc peroxide(ZnO_2)nanomaterial as an efficient material for the decontamination of cyanide from contaminated water. A process patent for ZnO_2 synthesis has been granted in United States of America(US Patent number 8,715,612; May 2014),South Africa,Bangladesh,and India. The ZnO_2 nanomaterial was capped with polyvinylpyrrolidone(PVP)to control the particle size. The PVP capped ZnO_2nanomaterial(PVP-ZnO_2)before and after adsorption of cyanide was characterized by scanning electron microscope,transmission electron microscope,X-ray diffractometer,Fourier transform infrared spectroscopy and time of flight-secondary ion mass spectrometry. The remaining concentration of cyanide after adsorption by PVP-ZnO_2 was determined using ion chromatograph. The adsorption of cyanide over PVP-ZnO_2 was also studied as a function of p H,adsorbent dose,time and concentration of cyanide. The maximum removal of cyanide was observed in p H range 5.8–7.8 within 15 min. The adsorption data was fitted to Langmuir and Fruendlich isotherm and it has been observed that data follows both the isotherms and also follows second order kinetics.  相似文献   
7.
对采用原子吸收火焰法次灵敏线测定污水和电镀污泥中高含量的锌进行了研究。试验结果表明:在锌浓度50.0~600.0mg/L之间,溶液锌含量与吸光度呈线性关系。线性回归方程为y=0.000661x-0.0007,相关系数γ=0.9998。方法检出限为25.0mg/L,相对标准误差(RSD)<2.96%,加标回收率为92.5%~105%,与标准法的相对误差<2.76%。  相似文献   
8.
Tian X  Li T  Yang K  Xu Y  Lu H  Lin D 《Chemosphere》2012,87(11):1316-1322
Zinc pyrithione is used as an antifouling agent. However, the environmental impacts of zinc pyrithione have recently been of concern. Zinc induces diverse actions during oxidative stress; therefore, we examined the effect of zinc pyrithione on rat thymocytes suffering from oxidative stress using appropriate fluorescent probes. The cytotoxicity of zinc pyrithione was not observed when the cells were incubated with 3 μM zinc pyrithione for 3 h. However, zinc pyrithione at nanomolar concentrations (10 nM or more) significantly increased the lethality of cells suffering from oxidative stress induced by 3 mM H2O2. The application of zinc pyrithione alone at nanomolar concentrations increased intracellular Zn2+ level and the cellular content of superoxide anions, and decreased the cellular content of nonprotein thiols. The simultaneous application of nanomolar zinc pyrithione and micromolar H2O2 synergistically increased the intracellular Zn2+ level. Therefore, zinc pyrithione at nanomolar concentrations may exert severe cytotoxic action on cells simultaneously exposed to chemicals that induce oxidative stress. If so, zinc pyrithione leaked from antifouling materials into surrounding environments would be a risk factor for aquatic ecosystems. Alternatively, zinc pyrithione under conditions of oxidative stress may become more potent antifouling ingredient.  相似文献   
9.
The halophytic shrub Halimione portulacoides is known to be capable of growth in soils containing extremely high concentrations of Zn. This study evaluated in detail the tolerance and accumulation potential of H. portulacoides under moderate and high external Zn levels. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0-130 mmol L−1) on growth and photosynthetic performance by measuring relative growth rate, total leaf area, specific leaf area, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. H. portulacoides demonstrated hypertolerance to Zn stress, since it survived with leaf concentrations of up to 2300 mg Zn kg−1 dry mass, when treated with 130 mmol Zn L−1. Zinc concentrations greater than 70 mmol L−1 in the nutrient solution negatively affected plant growth, in all probability due to the recorded decline in net photosynthesis rate. Our results indicate that the Zn-induced decline in the photosynthetic function of H. portulacoides may be attributed to the adverse effect of the high concentration of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1500 mg Zn kg−1 dry mass, demonstrating the strong capability of H. portulacoides to protect itself against toxic Zn concentrations. The results of our study indicate that this salt-marsh shrub may represent a valuable tool in the restoration of Zn-polluted areas.  相似文献   
10.
The antimicrobial activity of Cu2O, ZnO and NiO nanoparticles supported onto natural clinoptilolite was investigated in the secondary effluent under dark conditions. After 24 h of contact the Cu2O and ZnO nanoparticles reduced the numbers of viable bacterial cells of Escherichia coli and Staphylococcus aureus in pure culture for four to six orders of magnitude and showed consistent 100% of antibacterial activity against native E. coli after 1 h of contact during 48 exposures. The antibacterial activity of NiO nanoparticles was less efficient. The Cu2O and NiO nanoparticles showed 100% of antiprotozoan activity against Paramecium caudatum and Euplotes affinis after 1 h of contact, while ZnO nanoparticles were less efficient. The morphology and crystallinity of the nanoparticles were not affected by microorganisms. The metal oxide nanoparticles could find a novel application in the disinfection of secondary effluent and removal of pathogenic microorganisms in the tertiary stage of wastewater treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号