首页 | 本学科首页   官方微博 | 高级检索  
     检索      

光催化剂AgBr/Ag2MoO4@AgVO3的结构表征及其抗菌防污性能
引用本文:徐会会,张杰,吕仙姿,牛天杰,曾宇翔,段继周,侯保荣.光催化剂AgBr/Ag2MoO4@AgVO3的结构表征及其抗菌防污性能[J].装备环境工程,2019,16(5):65-71.
作者姓名:徐会会  张杰  吕仙姿  牛天杰  曾宇翔  段继周  侯保荣
作者单位:中国科学院海洋研究所,中国科学院海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071;海洋科学与技术试点国家实验室,海洋腐蚀与防护开放工作室,山东 青岛 266237;中国科学院大学,北京 100049;中国科学院海洋大科学研究中心,山东 青岛 266071;中国科学院海洋研究所,中国科学院海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071;海洋科学与技术试点国家实验室,海洋腐蚀与防护开放工作室,山东 青岛 266237;中国科学院海洋大科学研究中心,山东 青岛 266071;中国科学院海洋研究所,中国科学院海洋环境腐蚀与生物污损重点实验室,山东 青岛 266071
基金项目:国家自然科学基金(No. 41376003);中国科学院战略性先导科技专项(XDA13040405)
摘    要:目的制备新型的光催化复合材料,提高其光催化性能。方法通过水热法和原位生长法制备不同摩尔比的AgBr/Ag_2MoO_4@AgVO_3光催化剂。采用X射线衍射(XRD)、扫描电镜(SEM)和高分辨透射电子显微镜(HRTEM)等一系列手段对所制备的光催化剂进行表征,并以可见光为光源,有机污染物罗丹明B(RhB)为降解对象,进行光催化活性测试,考察不同复合量的光催化剂对反应活性的影响。同时,以铜绿假单胞菌细胞、金黄色葡萄球菌和大肠杆菌为模式菌,进行抗菌试验考察光催化剂的杀菌性能。结果该复合材料通过AgVO_3的(501)晶面、Ag_2MoO_4的(311)面和AgBr的(200)晶面紧密连接。在罗丹明B(RhB)溶液中加入该复合材料,120 min内降解率达到了94.9%,而纯AgVO_3的降解率为7.8%,说明复合后的材料光催化性能明显提高。此外,在光催化杀菌实验中,超过99.99%的大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌细胞均在90 min内被杀死。结论复合后的AgBr/Ag_2MoO_4@AgVO_3异质结光催化剂具有优异的光催化降解性能、杀菌性能和稳定性,该催化剂对于环境污染的治理以及海洋杀菌防污处理都起到一定的作用。

关 键 词:光催化  降解  杀菌  防污
收稿时间:2019/2/4 0:00:00
修稿时间:2019/5/25 0:00:00

Structural Characterization and Its Antibacterial and Antifouling Properties of AgBr/Ag2MoO4@AgVO3 Photocatalyst
XU Hui-hui,ZHANG Jie,LYU Xian-zi,NIU Tian-jie,ZENG Yu-xiang,DUAN Ji-zhou and HOU Bao-rong.Structural Characterization and Its Antibacterial and Antifouling Properties of AgBr/Ag2MoO4@AgVO3 Photocatalyst[J].Equipment Environmental Engineering,2019,16(5):65-71.
Authors:XU Hui-hui  ZHANG Jie  LYU Xian-zi  NIU Tian-jie  ZENG Yu-xiang  DUAN Ji-zhou and HOU Bao-rong
Institution:1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China,1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; 4. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China,1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; 4. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China,1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China,1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China,1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; 4. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China and 1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; 4. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:Objective To prepare novel photocatalytic composite material and improve its photocatalytic performance. Methods AgBr / Ag2MoO4 @ AgVO3 photocatalysts with different molar ratios were prepared with hydrothermal process and in situ growth method. The morphology and structure of AgBr/Ag2MoO4@AgVO3 nanocomposites were revealed by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The organic pollutant rhodamine B (RhB) was taken as the degradation target to carry out photocatalytic activity tests to investigate effects of photocatalytic performance with composite materials of different molar ratios under visible light irradiation. At the same time, P. aeruginosa, S. aureus and E. coli were used as model bacteria to carry out antibacterial tests to investigate the bactericidal properties of the photocatalysts. Results The composites were tightly connected by the (501) lattice plane of AgVO3, the (311) plane of Ag2MoO4, and the (200) lattice plane of AgBr. The photodegradation rate for Rhodamine B (RhB) reached 94.9% within 12 min after the composite was added, but 7.8% of the RhB was degraded when pure AgVO3 was used, which showed that the photocatalytic performance of the composite material was obviously improved. In addition, in the photocatalysis sterilization test, more than 99.99% of E. coli, S. aureus, and P. aeruginosa cells were killed within 90 minutes. Conclusion The AgBr/Ag2MoO4 @ AgVO3 photocatalyst has excellent photocatalytic degradation performance, bactericidal performance and stability, which can play a certain role in treatment of environmental pollution and marine sterilization and antifouling treatment.
Keywords:photocatalysis  degradation  sterilization  antifouling
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《装备环境工程》浏览原始摘要信息
点击此处可从《装备环境工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号