首页 | 本学科首页   官方微博 | 高级检索  
     检索      

F/M及HRT对果蔬垃圾厌氧发酵产氢的影响
引用本文:李标,孔晓英,李连华,李颖,袁振宏,孙永明,吕鹏梅.F/M及HRT对果蔬垃圾厌氧发酵产氢的影响[J].环境科学,2017,38(11):4882-4888.
作者姓名:李标  孔晓英  李连华  李颖  袁振宏  孙永明  吕鹏梅
作者单位:中国科学院广州能源研究所, 中国科学院可再生能源重点实验室, 广东省新能源和可再生能源研究开发与应用重点实验室, 广州 510640;中国科学技术大学纳米科学技术学院, 苏州 215123,中国科学院广州能源研究所, 中国科学院可再生能源重点实验室, 广东省新能源和可再生能源研究开发与应用重点实验室, 广州 510640,中国科学院广州能源研究所, 中国科学院可再生能源重点实验室, 广东省新能源和可再生能源研究开发与应用重点实验室, 广州 510640,中国科学院广州能源研究所, 中国科学院可再生能源重点实验室, 广东省新能源和可再生能源研究开发与应用重点实验室, 广州 510640,中国科学院广州能源研究所, 中国科学院可再生能源重点实验室, 广东省新能源和可再生能源研究开发与应用重点实验室, 广州 510640,中国科学院广州能源研究所, 中国科学院可再生能源重点实验室, 广东省新能源和可再生能源研究开发与应用重点实验室, 广州 510640,中国科学院广州能源研究所, 中国科学院可再生能源重点实验室, 广东省新能源和可再生能源研究开发与应用重点实验室, 广州 510640
基金项目:国家科技支撑计划项目(2015BAD21B03);中国科学院技术服务网络计划项目(KFJ-Ew-STS-138);广东省科技计划项目(2015B020215011)
摘    要:通过中温半连续厌氧消化实验,考察了果蔬垃圾在不同食微比(0.5、0.75、1.0和1.5)及不同水力停留时间(2、3和4d)下的产氢性能.结果表明,当食微比较低(0.5和0.75)时,各水力停留时间下均不适宜连续产氢,且在水力停留时间为3 d和4 d时容易产生大量甲烷;当食微比较高(1.0和1.5)时,可以实现稳定连续产氢,发酵过程中几乎无甲烷产生.当食微比及水力停留时间分别为1.0及3 d时可获得最佳连续产氢效率,其最高容积产氢量和平均容积产氢量分别为451m L·(L·d)~(-1)和(186±29)m L·(L·d)~(-1),最高挥发性固体产氢率和平均挥发性固体产氢率(以VS计)分别为133 m L·g~(-1)和(27±5)m L·g~(-1),氢气含量可达20%~30%.

关 键 词:果蔬垃圾  食微比  水力停留时间  氢气  甲烷
收稿时间:2017/2/17 0:00:00
修稿时间:2017/5/21 0:00:00

Effect of the Food to Mass Ratio and Hydraulic Retention Time on Hydrogen Production from Fruit and Vegetable Waste
LI Biao,KONG Xiao-ying,LI Lian-hu,LI Ying,YUAN Zhen-hong,SUN Yong-ming and L&#; Peng-mei.Effect of the Food to Mass Ratio and Hydraulic Retention Time on Hydrogen Production from Fruit and Vegetable Waste[J].Chinese Journal of Environmental Science,2017,38(11):4882-4888.
Authors:LI Biao  KONG Xiao-ying  LI Lian-hu  LI Ying  YUAN Zhen-hong  SUN Yong-ming and L&#; Peng-mei
Institution:Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China,Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China,Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China,Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China,Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China,Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China and Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Abstract:Semi-continuous biogas production from fruit and vegetable waste by medium temperature anaerobic fermentation was conducted. Hydrogen production under different food-microorganism ratios (F/M 0.5, 0.75, 1.0, 1.5) and hydraulic retention times (HRT) (2, 3, 4 d) were investigated. The results show that in the case of a smaller F/M values (0.5 and 0.75), not all HRT stages were conducive to the continuous production of hydrogen, however, they were conducive to producing methane, especially when HRT was 3 or 4 d. Continuous hydrogen production was viable when the F/M ration was relatively higher (1.0 and 1.5), however, this was not conducive to the production of methane, with almost no methane production detected in this process. A F/M of 1.0 and a HRT of 3 d provided the best conditions for continuous hydrogen production from fruit and vegetable waste. Meanwhile, the highest and average daily volume of hydrogen production were 451.2 mL·(L·d)-1 and (186±29) mL·(L·d)-1 respectively, whereas the highest and average hydrogen production rate of volatile solids were 133 mL·g-1 and (27±5) mL·g-1 respectively. The hydrogen content was 20%-30%.
Keywords:fruit and vegetable waste  food-microorganism ration(F/M)  hydraulic retention time  hydrogen  methane
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号